

i

DETECTING MAN-IN-THE-MIDDLE ATTACKS AGAINST TRANSPORT

LAYER SECURITY CONNECTIONS WITH TIMING ANALYSIS

THESIS

Lauren M. Wagoner, Civilian, USAF

AFIT/GCO/ENG/11-16

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

This material is declared a work of the U.S. Government and is not subject to copyright

protection in the United States.

AFIT/GCO/ENG/11-16

DETECTING MAN-IN-THE-MIDDLE ATTACKS AGAINST TRANSPORT LAYER

SECURITY CONNECTIONS WITH TIMING ANALYSIS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Lauren M. Wagoner, BS

Civilian, USAF

September 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

iv

AFIT/GCO/ENG/11-16

Abstract

 The Transport Layer Security (TLS) protocol is a vital component to the

protection of data as it traverses across networks. From e-commerce websites to Virtual

Private Networks (VPNs), TLS protects massive amounts of private information, and

protecting this data from Man-in-the-Middle (MitM) attacks is imperative to keeping the

information secure. This thesis illustrates how an attacker can successfully perform a

MitM attack against a TLS connection without alerting the user to his activities. By

deceiving the client machine into using a false certificate, an attacker takes away the only

active defense mechanism a user has against a MitM. The goal for this research is to

determine if a time threshold exists that can indicate the presence of a MitM in this

scenario. An analysis of the completion times between TLS handshakes without a MitM,

with a passive MitM, and with an active MitM is used to determine if this threshold is

calculable. Any conclusive findings supporting the existence of a timing baseline can be

considered the first steps toward finding the value of the threshold and creating a second

layer defense to actively protect against a MitM.

v

Table of Contents

Abstract ……………………………………………………………………………..iv

List of Figures ... vii

List of Tables ... viii

I. Introduction ... 1

II. Background .. 8

2.1. Cryptography ... 8

2.1.1 Symmetric Key Cryptography. .. 8

2.1.2 Public Key Cryptography. ... 10

2.2. Public Key Infrastructure ... 13

2.2.1. Public Key Infrastructure Entities and Functionality. 14

2.2.2. Public Key Certificates. .. 16

2.3. Network Protocols ... 16

2.4. The Transport Layer Security Protocol .. 22

2.4.1. The Record Protocol. .. 22

2.4.2. The Handshake Protocol. .. 23

2.4.2.1. ClientHello Message. ... 25

2.4.2.2. ServerHello Message. .. 27

2.4.2.3. Certificate Messages. ... 28

2.4.2.4. ServerHelloDone Message. .. 28

2.4.2.5. ClientKeyExchange Message. ... 29

2.4.2.6. Finished Message. .. 30

2.4.3. ChangeCipherSpec Protocol. .. 30

2.4.4. Alert Protocol. ... 31

2.4.5. Application Data. .. 32

2.4.6. Security Parameters. ... 32

2.4.6.1. The Pseudorandom Function. .. 33

2.4.6.2. Bulk Encryption Algorithm. .. 33

2.4.6.3. Message Authentication Code Algorithm. ... 34

vi

2.4.6.4. Compression Algorithm. .. 34

2.4.6.5. The Master Secret. ... 35

2.4.6.6. The Session Keys. .. 35

2.5. A Man-in-the-Middle Attack against a TLS Connection 36

III. Experimentation .. 40

3.1. Research Goal .. 40

3.2. Methodology and Approach .. 40

3.3. Experiment Set-up ... 43

3.4. Parameters and Factors .. 45

3.5. Assumptions during Experimentation.. 46

3.6. Data Representation and Statistical Analysis .. 47

3.7. Expected Results .. 51

IV. Results and Analysis ... 53

4.1. Results .. 53

4.1.1. AES-128 CBC with SHA.. 53

4.1.2. RC4-128 with MD5. ... 56

4.1.3 RC4-128 with SHA. ... 59

4.1.4. 3DES CBC with SHA. .. 60

4.1.5. Comparison of Trial 1. .. 65

4.2.6. Comparison of Trial 2. .. 66

4.2.7. Comparison of Trial 3. .. 69

4.2. Result Findings .. 74

V. Conclusions and Recommendations .. 79

5.1. Conclusions .. 79

5.2. Recommendations .. 82

Appendix A: TLS Protocol Error Alert Types .. 85

Appendix B: Additional Background Information ... 87

Appendix C: Scapy .. 104

Appendix D: Raw Data Interpretation .. 106

Bibliography ……………………………………………………………………………108

vii

List of Figures

Figure 1. Certification Hierarchy .. 15

Figure 2. X.509 Version 3 Certificate Structure ... 18

Figure 3. The TCP/IP Model .. 19

Figure 4. TCP Three-Way Handshake .. 21

Figure 5. Message Flow for Full TLS Handshake .. 24

Figure 6. Man-in-theMiddle Attack on a TLS Connection... 38

Figure 7. Network Environment for the Experiment .. 43

Figure 8. Interpretation of the p-Value ... 51

Figure 9. Scatter Plot of TLS Handshake Times – AES-128 CBC with SHA 54

Figure 10. Box Plot – AES-128 CBC with SHA .. 55

Figure 11. TLS Handshake Times – RC4-128 with MD5 .. 57

Figure 12. Box Plot – RC4-128 with MD5 ... 58

Figure 13. TLS Handshake Times – RC4-128 with SHA .. 60

Figure 14. Box Plot – RC4-128 with SHA ... 61

Figure 15. TLS Handshake Times – 3DES with SHA.. 62

Figure 16. Box Plot – 3DES with SHA .. 64

Figure 17. TLS Handshake Times – Trial 1 ... 66

Figure 18. Box Plot for Trial 1 across all Cipher Suites ... 67

Figure 19. TLS Handshake Times – Trial 2 ... 69

Figure 20. Box Plot – Trial 2 .. 70

Figure 21. TLS Handshake Times – Trial 3 ... 72

Figure 22. Box Plot – Trial 3 .. 73

viii

List of Tables

Table 1. Session Parameters for TLS Handshake Protocol .. 24

Table 2. Parameters for Finished Message ... 31

Table 3. Security Parameters for a Connection State in the Record layer 32

Table 4. Statistical Results Table 1 for AES-128 CBC with SHA 55

Table 5. Statistical Results Table 2 for AES-128 CBC with SHA 55

Table 6. Statistical Results Table 3 for AES-128 CBC with SHA 56

Table 7. Statistical Results Table 1 for RC4-128 with MD5 .. 58

Table 8. Statistical Results Table 2 for RC4-128 with MD5 .. 58

Table 9. Statistical Results Table 3 for RC4-128 with SHA .. 59

Table 10. Statistical Results Table 1 for RC4-128 with SHA .. 61

Table 11. Statistical Results Table 2 for RC4-128 with SHA .. 61

Table 12. Statistical Results Table 3 for RC4-128 with SHA .. 62

Table 13. Statistical Results Table 1 for 3DES with SHA ... 64

Table 14. Statistical Results Table 2 for 3DES with SHA ... 64

Table 15. Statistical Results Table 3 for 3DES with SHA ... 65

Table 16. Statistical Results Table 1 for No MitM Action across Cipher Suites 67

Table 17. Statistical Results Table 2 for No MitM Action across Cipher Suites 68

Table 18. Statistical Results Table 3 for No MitM Action across Cipher Suites 68

Table 19. Statistical Results Table 1 for a Passive MitM across Cipher Suites 70

Table 20. Statistical Results Table 2 for a Passive MitM across Cipher Suites 71

Table 21. Statistical Results Table 3 for a Passive MitM across Cipher Suites 71

ix

Table 22. Statistical Results Table 1 for an Active MitM across Cipher Suites 73

Table 23. Statistical Results Table 2 for an Active MitM across Cipher Suites 74

Table 24. Statistical Results Table 3 for an Active MitM across Cipher Suites 74

Table 25. Results of Comparisons between Different MitM Involvment Indicating

Probability of Statistical Difference ... 80

Table 26. Results of Comparisons between Cipher Suites Indicating Probability of

Statistical Difference .. 81

x

Conventions Used in This Paper

 The terms client, server, user, and Man-in-the-Middle (MitM) are consistently

used throughout this thesis. The term client is used to refer to the machine that initiates a

Transport Layer Security connection to a secure website. The server refers to the

machine that hosts the web server that the client is connecting to. The term user indicates

the person using the client machine. This person is the one who connects to and requires

information from the secure website. The term Man-in-the-Middle or MitM refers to both

the attacker and his machine. The MitM is the one trying to glean information from the

connection between the client and the server. Two different adjectives are associated

with the MitM throughout this report. A passive MitM refers to when an attacker is

acting as a proxy between the client and the server but is not making any changes to the

packets. An active MitM refers to when an attacker is not only acting as a proxy, but is

manipulating the packets in order to obtain the session keys for the connection.

.

1

DETECTING MAN-IN-THE-MIDDLE ATTACKS AGAINST TRANSPORT LAYER

SECURITY CONNECTIONS WITH TIMING ANALYSIS

I. Introduction

The Transport Layer Security (TLS) protocol is responsible for protecting nearly

all secure web browsing on the Internet today. From e-commerce websites to Virtual

Private Networks (VPNs), TLS protects private information exchanged across a network.

This information includes, but is not limited to, passwords, bank account information,

and personal identifiable information. As the use and dependency of the Internet

increases, so does the quantity of data that needs to be protected. And while the TLS

protocol is considered to be cryptographically secure, implementation and general user

practices leave the protocol prone to vulnerabilities.

The TLS protocol has many techniques that protect against a number of well

known attacks such as the Man-in-the-Middle (MitM). This attack is an eavesdropping

method that allows an adversary to gather and potentially alter data transmitted across a

network. With the proper implementation and use of public key certificates, TLS

prevents a MitM from obtaining any private data shared between a client and a server. A

public key certificate ensures that the client is communicating with a legitimate server

and that only the server is able to decrypt data used to generate session keys. These

2

session keys allow the two entities to communicate using encryption methods that

prevent any outsider from acquiring information that he should not have access to. Thus

protecting the session keys is imperative to protecting any sensitive data.

Currently a MitM has two options if he wants to garner the session keys for a

particular TLS connection. The first method is to obtain the server‟s private key in order

to decrypt the data needed to create the session keys. Decrypting this message without

access to the server‟s private key is computationally infeasible, and attaining a server‟s

private key is very difficult. The second method a MitM can use to get the session keys

is install his own server certificate that is trusted by the client. The client encrypts the

data used to create the session keys with the public key from the certificate it receives.

With this certificate switch and a few other packet manipulations so that the connection is

not aborted, a MitM can generate the session keys needed to read all the application data

from the TLS connection.

A client defends against this second method by verifying all certificates it

receives. When it is given an unauthenticated certificate, the client issues a warning to

the user suggesting that the connection should be closed. Creating a valid, fake

certificate is not easy to accomplish. Instead tricking the client into accepting a false

certificate is much simpler for the MitM. If an attacker can perform this deception, the

only active defense mechanism the client has against a MitM attack is rendered useless.

In this scenario a user no longer has knowledge of whether a MitM exists allowing the

attacker to glean as much information from the connection as he wants.

An attacker can take one of two approaches when trying to deceive a client. The

first method is exploiting weaknesses in the organizations that issue certificates. As long

3

as a client trusts the organization, any certificate created and signed by that company is

accepted by the client. If an attacker is able to obtain a certificate issued by one of these

organizations, he can use the certificate with the client without tripping any alerts. For

example, on March 15, 2011 Comodo, a Certificate Authority (CA), had one of its user

accounts breached. The account was used to issue nine valid certificates with domain

names such as mail.google.com and login.yahoo.com (Comodo, 2011). While the breach

was discovered quickly, the attacker could have stolen numerous usernames and

passwords to google and yahoo before the certificates were revoked. This incident only

illustrates one of the many ways a MitM can posses a fraudulent certificate that is always

accepted by a client.

 The second approach a MitM can use to deceive a client is to plant his false

certificate on the client‟s machine. When a client receives any certificate, it starts the

validation process by checking internal lists of approved certificates and CAs. The client

considers any certificate in one of these lists to be authentic and will continue with the

connection. If an attacker can place his certificate in one of these lists, the client will

always validate the fake certificate. Therefore, “[a]n even greater risk is posed by

unprotected systems when an attacker can preload his/her own trusted root authority

certificates” (Burkholder, 2002:1). Finding an unsecure client machine is much easier

than exploiting a CA.

 When an attacker successfully deceives a client, the user loses his only active

defense against a MitM attack. In this scenario the user needs to be aware of other

indications that may point to a MitM. A successful MitM attack requires the adversary to

be a proxy between two entities, redirecting all traffic in the connection to his own

4

machine and then forwarding packets to their correct destination. This redirect incurs a

timing delay not normally seen in a clean connection. A user may become wary when a

connection hangs, but without a certificate error warning he does not know if the timing

delay is caused by a real MitM or other network factors. Yet even if a user is suspicious

of a MitM because of a slow connection time, he can assume that the attacker can only

see encrypted data. A user has no way of knowing when a MitM is seeing encrypted data

or when he has successfully deceived the client and obtained the session keys.

 The goal of this research is to determine if a threshold based on connection time

can be established, indicating if a MitM exists and whether he is intercepting encrypted

or plaintext data. Showing that a statistical difference exists between a normal TLS

connection, a connection with a passive MitM, and a connection with a MitM who has

gotten the session keys is the first step in establishing if a baseline can be found. The

results from this research can potentially be used to determine the value of the threshold,

which in turn can be used to create a second warning layer against a MitM attack.

 The data collected in this experiment looks at the completion time for a TLS

handshake only. This part of the protocol is where the two entities authenticate each

other and negotiate the session keys. When the MitM sends his own certificate to the

client so that he can obtain the session keys, the attacker is then required to complete the

handshake separately with each entity in order for the connection to not be terminated.

No matter if the MitM uses the session keys to decrypt the messages offline or live on the

network, he must always perform the same manipulations in the TLS handshake. Thus,

only the time it takes to complete the handshake is relevant to this thesis.

5

 The scope of this research only looks at the handshake connection for TLS

version 1.0. This experiment also focuses on four of the many available cipher suites

used with TLS. A cipher suite is composed of a key exchange algorithm, a cipher

algorithm, and a MAC algorithm, and it is negotiated during the TLS handshake. The

four cipher suites considered in this experiment are chosen because they contain

commonly used algorithms. The four cipher suites are

 tls_rsa_with_rc4_128_md5,

 tls_rsa_with_rc4_128_sha,

 tls_rsa_with_aes_128_cbc_sha, and

 tls_rsa_with_3des_cbc_sha.

Each component in the cipher suite is used at least once during the TLS handshake, thus

variations between the algorithms used may affect the results. If no statistical difference

can be determined when comparing the results from each cipher suite, then any statistical

difference between the trials will be the result of the MitMs actions and not the cipher

suite.

 The novelty of this research is that it is quantifying the delay induced by a a MitM

attack. This thesis takes the first steps in analyzing MitM attacks to determine if a

baseline can be established that will indicate when a MitM is present. Because of its

widespread use, many studies have been conducted analyzing MitM attacks and

providing suggestions on how to prevent them. Yet while similarities exist, all of the

previous studies that were found did not have the same goals or scope as this thesis.

 For example, in 2002 Peter Burkholder published a report on MitM attacks

against the Secure Socket Layer (SSL) protocol, which is the predecessor to TLS. He

6

demonstrates how a MitM can be successful against systems that properly implement

SSL, faulty Internet Explorer (IE) versions, and misconfigured clients (Burkholder,

2002). Burkholder discusses the likelihood of a MitM attack in each case and provides

some recommendations on how to prevent them. But unlike the goals for this thesis,

these suggestions only provide ways to avoid MitM attacks, not how actively stop them.

 Another more recent study was conducted that analyzes a MitM attack against the

Diffie-Hellman (DH) key exchange protocol, which is one of the few available key

exchanges for TLS. In September 2009, Aaron Geary presented his Master‟s thesis with

details on how to avoid a MitM attack while using the DH key exchange (Geary, 2009).

The recommendations in this report provide tweaks to the implementation of the protocol

that would render it more secure. Again, these suggestions only indicate ways to avoid a

MitM attack and not how to actively stop it. Also Geary‟s study focused on the DH key

exchange, while the experimentation done for this thesis looks at the use of the RSA key

exchange algorithm in the TLS protocol.

 A third study done by Benjamin Aziz and Geoff Hamilton looks at how to detect

MitM attacks using precise timing. The research focuses on “the ability of mobile

systems, such as wireless sensors networks, in detecting Mi[t]M attacks in a timely

fashion” (Aziz and Hamilton, 2009: 1). The scope of their research looks at these types

of networks, which rely on distance-bounding protocols. The similarity between Aziz

and Hamilton‟s report and this thesis is that both try to determine the existence of a MitM

using timing. The difference between the two is that these authors focus on networks

using distance-bounding protocols while this thesis looks at the use of the TLS protocol.

7

 The remainder of this paper is divided into four main parts. Chapter 2 gives a

background on all the pertinent information needed to understand this experiment. This

section includes a general overview of public and private key cryptosystems, the Public

Key Infrastructure (PKI) and certificates, and a thorough look at the TLS protocol and

how a MitM would attack it. Chapter 3 describes the methodology and approach for this

research. This chapter summarizes the experiment, annotates the parameters and

variables, and gives an explanation for the motivation behind certain network

configurations. Chapter 4 reveals the results of the experiment along with an analysis of

the data collected. Finally, Chapter 5 finishes with a summary of the thesis and any

suggestions for improvement and future work.

8

II. Background

 The Public Key Infrastructure (PKI) is a framework of policies that implements

public key cryptography in an efficient way. This chapter discusses two cryptographic

key types, symmetric key and public key, followed by how the PKI is structured to

manage the public keys. The chapter then shifts to an overview of the IP/TCP network

model. This topic explains how information is sent and received between two entities on

a network. Finally, the chapter concludes with an in-depth discussion of the Transport

Layer Security (TLS) Protocol. This protocol is used to as a secure authentication

process in the PKI, providing capabilities such as secure web browsing.

2.1. Cryptography

2.1.1 Symmetric Key Cryptography.

Symmetric key cryptography is where two people or entities share a secret key

that allows them to exchange encrypted data. The shared key specifies how to change

plaintext to ciphertext and then back again. For this system to work the key must satisfy

one of two properties. Either both the key to encrypt the plaintext and the key to decrypt

the corresponding ciphertext are the same, or by knowing one of the keys, the other key is

easily derived (Adams and others, 2003).

Stream ciphers and block ciphers are two methods for encryption with a

symmetric key. Stream ciphers feed data into an algorithm a small piece at a time. For

example, if a sentence is encrypted with a stream cipher, each character is independently

9

fed into the algorithm. The output is concatenated to the end of the previous result to

create a full ciphertext. An example of a stream cipher is the Rivest Cipher 4, which was

created by Ron Rivest in 1987 (Mantin, 2001).

The second method of encryption that uses a symmetric key is called a block

cipher. Instead of small pieces, this type of cipher feeds blocks of data through an

algorithm, where the resulting data block is often used in processing the next chunk of

data. Well known examples of block ciphers include the Data Encryption Standard

(DES) and Advanced Encryption Standard (AES) families.

 Many advantages are offered with symmetric key cryptography. The

implementation of this cryptosystem takes very little time, memory, and computing

power (Adams and others, 2003:9). No matter the size of the plaintext or ciphertext,

encrypting and decrypting text is fast and efficient. Yet even with the small

implementation size, using symmetric keys has its disadvantages. The first drawback is

that the secret key needs to be shared securely between two entities. An out-of-band

exchange of keys must take place, which becomes more difficult as the distance between

the entities grow. Another disadvantage of using symmetric keys is the inability to

determine if a new entity is an imposter or not. Before a new key is shared, the identity

of the new contact must be verified, but without prior knowledge of the person, no one

would know that Alice is in fact Mallory. The last major shortcoming of using a

symmetric key cryptosystem is that it is not easily scalable. A different key is needed for

each unique connection. For example, if Bob has 12 different contacts, he needs 12

different keys to securely communicate with each person. To generalize, for n number of

users, up to n
2
/2 unique keys may be required (Adams and others, 2003:10). Thus as an

10

organization grows, the storage and maintenance for all of the keys becomes too

unwieldy to manage.

2.1.2 Public Key Cryptography.

 Whitfield Diffie and Martin Hellman first suggested the concept of a public key

cryptosystem in 1970 (Trappe and Washington, 2006:164). This notion was

unprecedented because it required the encryption key to be publically known. Today,

public key cryptosystems are widely used and is defined by the following conditions. For

M set of possible messages, K set of keys, the encryption function Ek, and the decryption

function Dk,

1. and for every and every .

2. For every m and every k, the values of and are easy to

compute.

3. For almost every if someone knows only the function Ek, it is

computationally infeasible to find an algorithm to compute Dk.

4. Given it is easy to find functions Ek and Dk.

(Trappe and Washington, 2006:190)

The first condition ensures that the encryption and decryption are inverse transforms.

Even though the two keys are distinctly different, the encryption function results in a

ciphertext that the decryption function must transform correctly back to the plaintext.

The second condition ensures that the encryption and decryption functions are efficient.

Any benefits of a public key cryptosystem are nullified if the implementation is not

proficient. The third condition states that a public key must exist. This property is what

makes a public key cryptosystem novel compared to using a symmetric key. The public

key maintains security because the generation of the key incorporates concepts pulled

from mathematically hard problems. For example, knowing that factoring a large number

11

into two large primes is still computationally infeasible allows for the generation of

secure key pairs. The final condition states that given a key, the encryption and

decryption functions must be easily identifiable. In other words, the algorithm for

encryption and decryption are publically known. Security rests in the generation of key

pairs and should not depend on keeping the algorithm proprietary.

Because of the public key, this cryptosystem has many advantages that a

symmetric key cannot provide. Authentication is the first benefit a public key can offer.

Public keys are bound to entities in objects called certificates. With trust in how these

certificates are created and managed, posing as another person is nearly impossible.

Unlike with symmetric keys, two parties previously unknown to each other can be

confident that the other person is who he claims to be.

 Public keys also allow for Confidentiality, which means that the intended receiver

is the only person that can read the data. Yet encrypting and decrypting data with a

public key system becomes computationally intensive as the size of the plaintext grows

(Trappe and Washington, 2006:5). The longer the plaintext, the more time, memory, and

computing power is needed. Therefore confidentiality is provided through the

establishment of a symmetric key, since they are more efficient in encrypting large

amounts of data. Key establishment can occur in two ways; either through key transfer or

key agreement. With key transfer, Alice generates the symmetric key, encrypts it with

Bob‟s public key, and then sends the resulting ciphertext to Bob. With key agreement,

Alice and Bob both generate variables, exchange them, and then uses those variables to

generate the symmetric key locally. At least one or more of these variables are encrypted

with a public key to be sent securely across the network.

12

 Integrity provides confidence to a user that data has not been changed or

corrupted either during transfer or over time (Adams and others, 2003:37). A public key

cryptosystem provides integrity with the use of hash functions. Hash functions take a

message of an arbitrary length as input and produces a fixed length result called a

message digest. A cryptographic hash function must have the following three properties:

1. Given a message m, the message digest h(m) can be calculated quickly.

2. Given a y, it is computationally infeasible to find an m′ with h(m′) = y

3. It is computationally infeasible to find messages m1 and m2 with h(m1) = h(m2)

(Trappe and Washington, 2006 218-219)

The first property assures that the hash is efficient. The second property states that the

hash function must be one-way. In other words, given a particular hash value finding an

input value that results in that hash value is computationally hard. Finally, the third

property says that finding two different input values that hash to the same output value

must also be computationally infeasible. The most commonly used hashes come from the

Secure Hash Algorithm (SHA) and the Message Digest (MD) families.

 To provide integrity to data, hash algorithms are used as a basis for creating a

Message Authentication Code (MAC). The data to be secured is combined with a secret

key to be inputs for a hash function. Commonly known as keyed-hash algorithms, this

method provides added security to the data by using a secret key negotiated with public

key cryptography. Many different keyed-hash algorithms exist with the most prevalent

being the Keyed Hash Message Authentication Code (HMAC). The final result of the

keyed hash algorithm is the MAC, which is appended to the data. Because of the MAC,

any changes to or corruption of the data is easily noticeable. One would only have to

13

recalculate the MAC and compare it to the original value. If the two values are different

then the data has been altered in some way.

 Non-repudiation means that one cannot deny any data that he has sent. A public

key cryptosystem provides non-repudiation through the use of digital signatures. A

digital signature is created when data, usually the MAC, is encrypted with the private

key. In this way the digital signature cannot be forged as long as the private key is kept

secret. Anyone else having access and use of the private key besides the owner is

considered to be computationally infeasible. The signature itself is easily verified by any

entity since the public key is openly accessible to all users. Two of the most commonly

used public key algorithms today are the Diffie-Hellman (DH) algorithm and the RSA

algorithm.

2.2. Public Key Infrastructure

The Public Key Infrastructure (PKI) was developed to generate and manage the

keys of a public key cryptosystem. Some of the services that a PKI can provide to users

are secure email, secure web access, and Virtual Private Networks (VPNS). The PKI

consists of “policies defining rules under which the cryptographic systems operate”

(Trappe and Washington, 2006:270). Trust is a key element to PKI, and users must trust

that the policies are implemented correctly and securely. Without confidence in the

generation, authenticity, and validity of the public keys and how they are managed, PKI

would fall apart.

14

2.2.1. Public Key Infrastructure Entities and Functionality.

 A Certificate Authority (CA) is responsible for creating all public and private key

pairs for an organization in the PKI. When the CA creates a new key pair, it must verify

that the client requesting the keys is not an imposter. After verification of the client, the

CA creates a new key pair, giving the private key to the client and putting the public key,

along with information about the client, in a data structure called a certificate. The CA

then uses its own private key that it generated to digitally sign the certificate information.

The resulting signature is appended to the end of the certificate. In this way the CA binds

each entity to a public key. Since the CA creates its own public and private key, users

must fully trust the CA because its certificate cannot be authenticated. But, with this trust

a user can be confident in the authenticity of any certificate that the CA signs.

 The CA has the ability to appoint a Registration Authority (RA) to also perform

bindings. In implementing a PKI for a large organization an RA provides “scalability

and decrease [in] operational costs” (Adams and others, 2003:86). The responsibilities of

the RA can include confirming the identities of clients, requesting a new certificate from

the CA on behalf of a user, and generating new key material for clients (Adams and

others, 2003:86-87). The RA is able to perform these and many other functions with a

certificate that is signed by the CA. Since the CA is deemed trustworthy, then any

certificate signed by the RA is considered to be legitimate as well. This concept is called

Certificate Hierarchy and is illustrated in Figure 1.

 Besides the CA and RA, the PKI incorporates many other entities and

functionality. Certificate Repositories are databases containing the public certificates that

15

Figure 1. Certification Hierarchy (Trappe and Washington, 2006:272)

have been signed and published by the CA. Any user in the PKI must have access to all

the public keys for the organization in order for the cryptosystem to work. The

repositories allow for quick and easy access to the certificates. Certificate Revocation

Lists (CRLs) are records containing all the certificates that are not longer valid. An

invalid certificate has either been compromised or has expired. Every user must know if

a certificate should no longer be used, and the CRLs provide the mechanism for checking

the certificates.

The PKI also facilitates Key Back-Up and Recovery system. A user forgetting his

password, break the medium holding the private key, or in any other way render the

private key unusable is not uncommon. Without the private key any data that has been

encrypted with the corresponding public key is no longer accessible. This same situation

arises when a certificate has been either compromised or expired. The Key Back-Up and

Recovery structure stores the decrypting key for every certificate, but never the signing

Client

RA

CA

Client Client Client Client

16

key. Therefore, a user would be able to recover any encrypted data, but does not have the

ability to sign or encrypt any new data.

2.2.2. Public Key Certificates.

Certificates are signed data structures that bind an entity to a public key. Loren

Kohnfelder was the first to suggest the concept of a certificate in 1978 (Adams and

others, 2003:70). Two types of certificates exist; identity certificates and credential

certificates. Identity certificate are more commonly used, and they contain a public key

and the information about the entity that owns it. Credential certificates are used for

defining access rights to certain objects. Many certificate formats are used in the world

today, but the most prevalent format is the X.509 Public Key certificate. The X.509

certificate has three different versions and the structure for version 3 if found in Figure 2.

Key elements of this figure are the Subject Public Key Info and the Digital Signature.

The Subject Public Key Info contains the public key and an ID to know what algorithm

the public key is used with. The Digital Signature is used to validate the integrity of the

data and person associated with the certificate. If a client can verify the Digital

Signature, then he knows that the certificate was issued by an authorized entity, the

owner of the certificate is who he says he is, and data in the certificate has not been

changed in anyway.

2.3. Network Protocols

 Interoperability between systems is essential. Computers need to be able

“to communicate and work together with no information about each other beyond

17

compliance with certain standards” (Loshin, 2003:25). These standards are known as

protocols, which are a set of rules used to define every type of communication going

across a network. Every protocol created must specify and define the following:

1. how an interaction is initiated,

2. what type of interactions are permitted,

3. what constitutes as a valid request and response,

4. what to do when an invalid message is received,

5. what proper formatting is for both data packaging and protocol messages, and

6. rules on what behaviors and types of data are acceptable, unacceptable, or

preferred.

These specifications ensure that all data is sent and received across a network properly

and efficiently.

Different protocols have been developed for each stage of transportation across a

network, and these protocols are sorted based upon which layer they operate in, as

defined in the TCP/IP model. The approach for this model is to implement the protocol

first and then specify it second. This method allows for greater flexibility and less

structure, as compared to the OSI model (Kurose and Ross, 2010: 53-54). The TCP/IP

model specifies four layers; the Application layer, Transport layer, Internet layer, and

Network Interface layer; but allows for the use of other layers as well. The model also

details how the layers are ordered, but does not mandate that the ordering has to be

followed. Figure 3 illustrates the four layers of the TCP/IP model and how they can be

layered on top of each other.

1
8

Signed Data

Version Serial Number Signature Issuer Validity Subject Subject

Public Key

Info

Issuer

Unique ID

Subject

Unique

ID

Extensions Digital

Signature

Identifies the

Version of the

Certificate

 Optional

Extensions

 Unique Integer

Identifier for

the Certificate

 Unique Name of

the Certificate

Issuer

 Unique

Name of the

Owner

 Optional

Unique ID of

the Issuing

CA

 Algorithm and

Digital Signature

 Algorithm ID

used to sign the

Certificate

 Not Before and

Not After

Validity Time

 Public Key (and

Algorithm ID)

of the Owner

 Optional

Unique ID of

the Subject

Figure 2. X.509 Version 3 Certificate Structure (Adams and others, 2003:72)

19

Figure 3. The TCP/IP Model (Loshin, 2003:80)

 The Network Interface layer is considered the lowest level of the TCP/IP model.

Interaction on this layer occurs directly between two IP nodes, where data is transmitted

between Media Access Control (MAC) addresses. One of the most well known protocols

at this level is the Address Resolution Protocol (ARP). Across Ethernet networks, ARP

provides the mechanisms for mapping MAC addresses to Internet layer addresses.

 The Internet layer is the second lowest layer of the TCP/IP model. This layer

provides abstraction by enabling “seamless interoperation between nodes on any local

network, using any operating system, any hardware platform, and with no prior

knowledge about communicating nodes beyond their internet addresses” (Loshin,

2003:96). Many functions for network communication are provided by the internet layer,

including transmitting data between the network interface layer, routing data to its correct

destination, and handling packet fragmentation and errors. One of the greatest

advantages of this layer is its ability to sustain large and dynamic networks where speed

LINK

TRANSPORT

INTERNET

APPLICATION

20

and availability can drastically fluctuate at any moment. The most common internet layer

protocol is the Internet Protocol (IP). This protocol defines how nodes communicate

across the internet, how IP nodes handle IP packets, and how outbound packets are

addressed. This protocol is also responsible for defining the internet address space.

The Transport layer follows the Internet layer in the TCP/IP model. This layer

facilitates the communication between running processes on different nodes. The

transport layer acts as a go between for the network and application. Application data is

prepared and sent over the network and receiving data is processed back into readable

data for the application.

 The two most widely used protocols in the Transport layer are the User Data

Protocol (UDP) and the Transmission Control Protocol (TCP). UDP provides the bare

minimum to the Transport layer. This protocol is a best effort one that is unable to

correct for corrupt or lost messages. TCP, on the other hand, allows for a reliable

connection with guaranteed delivery of data. TCP provides many services, including

basic data transfer, reliability, flow control, and multiplexing.

The services provided by a TCP connection is established through a

synchronization process known as a Three-Way Handshake, as illustrated in Figure 4.

Host A begins by requesting to open a TCP connection with Host B. If Host B wants to

continue the connection, it sends a segment acknowledging the request made by Host A

as well as making its own request for connection. Host A then completes the handshake

with a third message by acknowledging the request made by Host B. With this final

21

Three-Way Handshake

Host A Host B

Send TCP open request

 -SYN bit set

 -Sequence Number = 167

 Receive the open request

Send a response

 -SYN, ACK bits set

 -Sequence Number = 321

 -Acknowledgment Number = 168

Receive the Acknowledgement

Send a response

 -ACK bit set

 -Sequence Number = 168

 - Acknowledgment Number = 322

 Receive the Acknowledgment

Handshake is complete

Figure 4. TCP Three-Way Handshake (Loshin, 2003:367)

message a TCP connection is established and application data can be sent. Either host

can then initiate the end of the connection by sending a close segment.

 The Application layer is the final and top most layer of the TCP/IP model. The

communication in this layer can be between people, people and systems, or systems. The

functionality for the application layer includes, but is not limited to, file sharing, network

management, and even video conferencing. This layer also addresses the formatting of

application data using standards such as Hyper Text Markup Language (HTML) to do so.

22

2.4. The Transport Layer Security Protocol

 In the early 1990‟s, Netscape introduced a web browser named Navigator, which

used the proprietary Secure Socket Layer (SSL) protocol (Loshin, 2003:335). Shortly

after Navigator‟s release, SSL was made public, which allowed the community to help

improve the protocol. SSL soon became the most widespread standard for secure web

browsing and still is today. In 1999, the SSL protocol received an overhaul and the

resulting version become known as the Transport Layer Security (TLS). This protocol

operates between the application and transport layers by encrypting and decrypting the

data. TLS consists of multiple sub-protocols, each with its own functionality that adds to

the establishment and security of the connection. The following sections detail each of

these sub-protocols and discuss the security and cryptographic elements incorporated in

TLS.

2.4.1. The Record Protocol.

 The Record Protocol, or the record layer, is used to ensure that a connection is

confidential and trustworthy. This layer is responsible for preparing and unpacking the

data between the application and network. On the sending side, the data preparation

includes fragmenting, encrypting, and possibly compressing the data before it is sent.

The record layer unpacks the data by reassembling, decrypting, and decompressing it.

The data is then verified before it is sent up to the application.

 In order for the record layer to perform the data preparation correctly, it must

have a shared connection state with other entity. The connection state consists of a

23

compression algorithm, an encryption algorithm, and a MAC algorithm along with any

parameters that is needed to perform them. This state is negotiated with the Handshake

Protocol and instantiated with the Change Cipher Spec Protocol. Once the connection

state is agreed upon, but before it can be used, the record layer generates all the secret

keys needed for the connection.

 When a connection state is established, the record layer can begin securing data

for transmission. If the data to be sent is greater than 2
14

 bytes, the record layer begins

the preparation process with fragmentation. Once the data is in blocks of 2
14

 bytes or

less, it data is compressed based upon the negotiated compression method. Finally a

MAC is calculated and appended to the end of the data before it is encrypted as indicated

by the connection state. The data is then sent across the network to the receiving host.

 On the receiving end, the data must be unpacked based upon the connection state

and verified by the Record layer. First, the data is decrypted and the MAC value is

checked to make sure that the data has not been altered in any way. If the MAC value is

verified the data is decompressed. When all parts of the data have been collected, the

record layer reassembles any and all fragments before sending it up to the application.

2.4.2. The Handshake Protocol.

The Handshake Protocol is responsible for negotiating session variables between

clients through a handshaking process. A synopsis of all of the session parameters can be

found in Table 1. By the end of the handshake exchange the clients have agreed upon the

version of TLS to use, a public key encryption method, a cipher algorithm, and a MAC

algorithm. The handshake is also used to authenticate the entities to each other.

24

Table 1. Session Parameters for TLS Handshake Protocol

Parameters Definitions

Session

Identifier

An arbitrary byte sequence chosen by the server to identify an active

or resumable session state.

Peer

Certificate

X509v3 certificate of the peer. This element of the state may be null

Compression

Method

The algorithm used to compress data prior to encryption

Cipher Spec Specifies the pseudorandom function (PRF) used to generate keying

material, the bulk data encryption algorithm and the MAC algorithm.

It also defines cryptographic attributes such as the mac_length.

Master Secret 48-byte secret shared between the client and server

Is Resumable A flag indicating whether the session can be used to initiate new

connections.

(Dierks and Rescorla, 2008: 27)

Client Server

ClientHello ----------------->

 ServerHello

 Certificate*

 ServerKeyExchange*

 CertificateRequest*

 <---------------- ServerHelloDone

Certificate*

ClientKeyExchange

CertificateVerify*

[ChangeCipherSpec]

Finished ---------------->

 [ChangeCipherSpec]

 <---------------- Finished

Application Data <----------------> Application Data

Figure 5. Message Flow for Full TLS Handshake (Dierks and Rescorla, 2008:35)

*Indicates optional or situation-dependent messages that are not always sent

25

The server is always authenticated by its certificate, but client authentication is only

optional.

The TLS Handshake Protocol consists of nine messages, five of which must

always be sent. Figure 5 illustrates these messages and how they are sent during the

handshake. These messages are used to accomplish the following tasks:

1. Exchange hello messages to agree on algorithms, exchange random values, and

check for session resumption.

2. Exchange the necessary cryptographic parameters to allow the client and server to

agree on a premaster secret.

3. Exchange certificates and cryptographic information to allow the client and server

to authenticate themselves.

4. Generate a master secret from the premaster secret and exchanged random values.

5. Provide security parameters to the record layer.

6. Allow the client and server to verify that their peers has calculated the same

security parameters and that the handshake occurred without tampering by an

attacker. (Deirks and Rescorla, 2008:34)

The following sections describe each of these messages and how they contribute to the

protocol. The scope of this thesis only pertains to the ClientHello, ServerHello,

Certificate, ServerHelloDone, ClientKeyExchange, and Finished messages. More

information about the other optional messages can be found in (Deirks and Rescorla,

2008). As in the RFC 2246, the messages are presented in the order they must be sent.

 2.4.2.1. ClientHello Message.

The ClientHello message is sent by the client to initiate a connection with a

server. This message contains five key elements to be sent to the server that help

determine the session variables. These items are a protocol version, a random value, a

session ID, cipher suites, and compression methods. The protocol version indicates to the

26

server the highest TLS Protocol that the client supports. Each version has a slightly

different implementation, which means that the client and server must agree on the best

protocol available to both entities.

 The random value is an integer generated by the client in two parts. The first four

bytes of this number is the current date and time based upon the internal clock of the

client machine. This timestamp is represented in the standard UNIX 32-bit format. For

the second part of the value, the client randomly generates 28 bytes. The resulting 32

byte number is considered the client random value and it is sent to the server to be used

later in the protocol.

The session ID is a 32 byte number that the server creates during the handshake to

associate each client with a particular session. If a client wants to use the same security

parameters from a previous session, then it sends the session ID from that connection to

the server in the ClientHello. If this field is empty, the client either has never connected

to the server before or wants to negotiate new security parameters. A new session ID

becomes valid when the handshaking is complete and remains so for as long as the server

implementation specifies.

The client then composes a list of cipher suites and compression methods that it is

capable of executing. A cipher suite consists of a key exchange algorithm, a bulk

encryption algorithm, and a MAC algorithm. There is no limit to how many cipher suites

and compression methods the client can send. When sent in the ClientHello, these lists

are ordered based upon the client‟s preference with the most desirable first.

27

 2.4.2.2. ServerHello Message.

The server sends a ServerHello message in response to the ClientHello. This

message also has five key elements, each in response to the ones in the ClientHello.

Based on the protocol version sent by the client, the server determines the highest version

supported by both entities. The version sent in the ServerHello is the one to be adhered

to throughout the rest of the connection. The server also generates a 32 byte random

value following the same format as the client random number. This value must be

generated independently of the client nonce. The server random value is combined with

the client random value later in the protocol to generate keying material.

If a session ID is sent in the ClientHello message, the server looks in a cache for a match.

If one exists the server may decide to use the same security parameters from that previous

session. In this case, the server echoes back the same session ID value in the

ServerHello. The two entities can then proceed straight to the Finished messages. The

server may decide that it does not want to use the previous security parameters. The

server also may not be able to find a match to the session ID in the cache, or the client

might have left the field empty. In all of these cases the server creates a new session ID.

This new value is sent back to the client in the ServerHello, indicating that a new session

was created. If the server does not support caching of security parameters it leaves this

field blank.

 Finally, the server decides the cipher suite and compression algorithm to use in

the connection. Based upon the lists sent in the ClientHello message, the server ensures

that the most secure cipher suite and compression algorithm is chosen. The selected

28

algorithms are sent to the client in the ServerHello. If the server decides to resume a

previous session, the cipher suite and compression method from that previous session are

sent in the message.

 2.4.2.3. Certificate Messages.

After the ServerHello message, the server sends its X.509 certificate to the client

in the Certificate message. This message must be sent if the key exchange method

requires the use of certificates for authentication. The server should make sure that the

certificate it sends is appropriate for the key exchange. The message itself contains the

certificate chain for the server‟s certificate. The first certificate in the message is the

server‟s followed by the certificate that signed it. Each proceeding certificate is the one

that signed the previous certificate in the list. This chain continues with all certificates up

to, but not necessarily including, the root certificate. The root certificate may be omitted

since the client should already posses it.

 2.4.2.4. ServerHelloDone Message.

 After the server has sent all required messages in the initial handshake segment, it

sends the ServerHelloDone. This message indicates that the server is done sending

messages for the key exchange and is now waiting for the client‟s response. Once the

client receives the ServerHelloDone message, it verifies that the server‟s certificate is

authentic before continuing on with the handshake.

29

 2.4.2.5. ClientKeyExchange Message.

The ClientKeyExchange is sent by the client after the ServerHelloDone message.

The singular purpose of this message is to securely exchange information that is later

used to create the session keys. Depending upon the key exchange method, the

information in this message is either the premaster secret or variables used to create the

premaster secret.

 For the RSA algorithm, the client generates a 48 byte premaster secret to send to

the server. The first 2 bytes of the premaster secret is the protocol version that the client

sent in the ClientHello. This version number may not be the same one the protocol is

currently running under. This value is used to protect the connection from a playback

attack. The next 46 bytes is a random value securely generated by the client. The

premaster secret is then encrypted with the server‟s public key, which was sent in the

Certificate message. Once encrypted, the premaster secret is sent to the server in the

ClientKeyExchange message.

 For a DH key exchange, the ClientKeyExchange message is used to send the DH

public value. The public value could have been sent in the Certificate message as part of

the server‟s certificate. In this case, the ClientKeyExchange is still sent but remains

empty. After the ClientKeyExchange message is sent, each entity uses the DH variables

to compute the premaster secret independently.

30

 2.4.2.6. Finished Message.

The Finished message is used to verify that the key exchange between the client

and server was successful. This message must always be sent after the Change Cipher

Spec message. The Finished message is the first one sent using the newly negotiated

secrets, keys, and algorithms. Both sides compute and send this message, usually with

the client sending the message first. The data in the Finished message is computed as

follows:

verify_data = PRF(master_secret, finished_label, Hash(handshake_messages))

 [0 . . verify_data_length] (1)

where the parameters are defined in Table 2. When a Finished message is received, the

entity must compare the PRF value it computed with the one in the message. If the

values are the same, then the key exchange was successful and the application data can

now be sent. If the values are different, then the message cannot be authenticated and a

fatal error occurs.

2.4.3. ChangeCipherSpec Protocol.

The ChangeCipherSpec protocol is used to instantiate the newly negotiated

connection state. From this point forward Record layer compresses and encrypts the data

based on the agreed algorithms. This message is sent in the middle of the handshake by

both entities. The ChangeCipherSpec message comes after the authentication and key

exchange messages, but it must come before the Finished messages.

31

Table 2. Parameters for Finished Message

Parameters Definitions

master_secret Value generated by each entity independently based upon

variables sent through the Handshake message

finished_label For Finished messages sent by the client, the string “client

finished”. For Finished messages sent by the server, the string

“server finished”.

handshake_messages All of the data from all messages in this handshake (not

including any HelloRequest messages) up to, but not including,

this message. This is only data visible at the handshake layer

and does not include record layer headers.

Hash The Hash must be the same one defined and used the PRF

verify_data_length The length depends on the chosen cipher suite, but the default is

12 bytes. Any other value must at least be 12 bytes.

(Dierks and Rescorla, 2008:63-64)

2.4.4. Alert Protocol.

 Alert messages are sent to notify an entity of an error. Errors have two severity

types; warning and fatal. If a fatal error occurs, the connection ends immediately, and the

session ID becomes invalid, preventing the security parameters of that session from being

used again. If an error occurs with a warning level the appropriate alert is sent and the

receiving end decides if it wants to continues or terminate the connection. If the entity

decides to terminate the connection it sends a fatal error. The two types of alerts defined

in the TLS Protocol are Closure Alerts and Error Alerts. A closure alert indicates that

messages will no longer be sent. Any data received after the close notify alert is ignored.

Both the client and server are able to send this message. When received, the entity must

immediately send its own closure alert and shut down the connection. Error alert

messages notify the other entity that an error has occurred in the process of executing the

protocol. A list of all the error alerts and their definitions can be found in Appendix A.

32

2.4.5. Application Data.

 The Application Data is used only after a successful handshake. This protocol is

encapsulated within the Record layer and contains the data from the higher level client.

This data can include HTTP requests and file transfer data.

2.4.6. Security Parameters.

 The Security Parameters are the variables negotiated between the client and server

during the handshake. These parameters are used by the record layer to determine the

current connection state and create the session keys. All of the security parameters are

enumerated and defined in Table 3. The first parameter, the Connection End, simply

defines which entity is the client and which entity is the server.

Table 3. Security Parameters for a Connection State in the Record layer

Parameters Definitions

Connection End Is this entity the “client” or the “server” in the connection

PRF Algorithm The pseudorandom function is an algorithm used to generate keys

from a master secret

Bulk Encryption

Algorithm

Includes key size of the algorithm, whether it is a block, stream, or

AEAD cipher, the block size of the cipher, and the lengths of

explicit and implicit nonces

MAC Algorithm Used for message authentication. Includes the size of the value

returned by the MAC algorithm

Compression

Algorithm

Used for data compression. This includes all parameters needed in

order to perform the compression

Master Secret a 48-byte secret shared between the two entities of the connection

Client Random a 32-byte value provided by the client

Server Random a 32-byte value provided by the server

(Deirks and Rescorla, 2008:16-17)

33

2.4.6.1. The Pseudorandom Function.

The Pseudorandom Function (PRF) is used for key generation as well as

verification between the client and the server. The PRF is a function that takes in three

variables; a secret, a seed, and a label; and returns an output value of some arbitrary

length. The equation for the general PRF is as follows:

 PRF(secret, label, seed) = P_hash(secret, label || seed) (2)

where secret is a shared key, label is a defined string, and seed is the data that the PRF

is used on. The P_hash function is defined as follows:

P_hash(secret, seed) = HMAC_hash(secret, A(1) || seed) ||

 HMAC_hash(secret, A(2) || seed) ||

 HMAC_hash(secret, A(3) || seed) || … (3)

where the function A() is defined as:

 A(0) = seed

 A(i) = HMAC_hash(secret, A(i-1)) (4)

The HMAC_hash that is used here is explicitly defined in the RFC, and varies between

TLS Version 1.1 and TLS Version 1.2. The P_hash function is then iterated as many

times needed to produce the number of bytes required.

 2.4.6.2. Bulk Encryption Algorithm.

 The encryption algorithm is used by the Record layer to change the plaintext data

into ciphertext before sending it across the network. The available cipher options vary

between the three versions of TLS as well as implementations.

34

 2.4.6.3. Message Authentication Code Algorithm.

 The MAC is used in TLS for message authentication. The MAC is computed

using the compressed data as input, and the resulting value is appended to the end of the

data before it is encrypted. The HMAC is the algorithm used to calculate the MAC, and

the hash used for the basis of the HMAC is negotiated in the handshake. The available

hash algorithms is dependent upon the TLS version and implementation in use.

The equation for calculating the MAC is as follows:

HMAC_hash (MAC_write_secret, seq_num || TLStype ||

 TLSversion || TLSlength || TLSfragment) (5)

where MAC_write_secret is computed from the key block, seq_num is the sequence

number for the Record message, TLStype, TLSversion, and TLSlength, are the header

information for the Record layer, and TLSfragment is the data being sent. The sequence

number is an 8 byte value used as a security measure in the Record layer. When a new

connection state is made active the sequence number is set to zero in the first message

sent under the new connection state. The sequence number is incremented by one after

each message that is sent in that connection state.

 2.4.6.4. Compression Algorithm.

The compression algorithm is used in the Record layer to compress data before it

is encrypted. The current TLS Protocol defines the compression algorithm as null, with

no other options available. Thus, the Record layer does not compress any of the data that

it sends to another entity. Yet, while the TLS Protocol does not define any compression

35

algorithms, (Hollenbeck, 2004) does define one that can be used. This RFC also

describes how to negotiate this algorithm as well as how to specify any additional

algorithms one might want to use.

 2.4.6.5. The Master Secret.

 The master secret is a 48 byte shared key that both the client and the server

generate independently based upon shared variables. The master secret is used to

generate all the session keys for the connection, and it is used in the Finished message to

verify that the client and server are the same entities that began the connection. The

master secret is calculated as follows:

 master_secret = PRF(premaster_secret, “master secret”,

 client_random || server_random)[0…47] (6)

where premaster_secret is generated in the handshake, client_random is the 32 byte

value from the client, and server_random is the 32 byte value from the server. The first

48 bytes resulting from the PRF becomes the master secret.

 2.4.6.6. The Session Keys.

When a connection state has been negotiated, but before it can be used, the

Record layer needs to generate the session keys. Up to six different keys may be

produced based upon the selected algorithms in the connection state. These keys are as

follows: client MAC key, server MAC key, client encryption key, server encryption key,

client IV and server IV. The client uses the client variables for processing the sending

data and it uses the server variables for processing the receiving data. The server follows

36

the same pattern using the server variables for outgoing data and the client variables for

incoming data.

To calculate these variables the Record layer uses the PRF to create a key block

as follows:

key_block = PRF(master_secret, “key expansion”,

 server_random || client_random) (7)

where master_secret is a shared secret, and server_random and client_random are

provided in the handshake. Once the key_block is created, it is divided to the different

keys. This partitioning can be represented as follows:

key_block = client_MAC_key [mac_key_length] ||

 server_MAC_Key [mac_key_length] ||

 client_key [encrypt_key_length] ||

 server_key [encrypt_key_length] ||

 client_IV [fixed_nonce_length] ||

 server_IV [fixed_nonce_length] (8)

The lengths of each key vary based upon the connection state. Any keys that are not

needed for a particular connection are left empty.

2.5. A Man-in-the-Middle Attack against a TLS Connection

In order for a MitM to be successful against a TLS connection, the MitM must

acquire the pre-master secret. With this value the MitM can create all the session keys

for the current connection and decrypt the messages at his leisure. To obtain the session

37

keys without notice, the MitM needs to have full control over the TLS protocol and must

be able to execute all parts of the TLS handshake.

A diagram of a MitM attack on a TLS connection can be found in Figure 6. To begin, the

client sends the ClientHello message to the server. The MitM allows this message to

reach the server, while recording the client random value in the process. The server

replies with three messages; the ServerHello, the Certificate, and the ServerDone

messages. The MitM saves the server random value, the chosen TLS version, and the

chosen cipher suite from the ServerHello without making any alterations. Then the MitM

replaces the server‟s certificate with his own before passing the message on to the client.

From the server‟s certificate the MitM obtains the public key of the server to use later.

The certificate message is also stored for the calculation of the final finish message. The

ServerDone message has no relevant information for the MitM. This message is stored

for the final finish message and passed to the client without any changes.

When the client receives the messages from the server it replies with three

messages of its own; the ClientKeyExchange, the ChangeCipherSpec, and the encrypted

Finished messages. Since the client received the MitM‟s certificate, it encrypted

the pre-master secret with the MitM‟s public key. The MitM decrypts this message to get

the pre-master secret and then re-encrypts the message with the server‟s public key. The

ChangeCipherSpec message is not altered in anyway and does not need to be stored since

it is not used in the final finish message. The MitM then decrypts the Finished message

to store, but it must not send it to the server. Since the MitM sent the client a different

certificate then what the server sent, the calculated finish hash value is different between

the server and client. The MitM must create the correct Finished hash that corresponds

38

Figure 6. Man-in-theMiddle Attack on a TLS Connection

(dashed boxes indicate messages changed by the MitM)

with the messages sent and received by the server. When the MitM makes all the

appropriate changes it sends all three messages to the server.

Upon receipt of the three messages from the client the server decrypts the

ClientKeyExchange to get the pre-master secret, calculates the session keys, and then

MITIM
CLIENT SERVER

ClientHello

ServerHello

ServerCertificate

ServerDone

MitMCertificate

ServerHello

ServerDone

ClientKeyExchange

ChangeCipherSpec

EncrytpedFinished

ChangeCipherSpec

EncryptedFinished

ChangeCipherSpec

EncryptedFinished

ApplicationData

ApplicationData

ApplicationData

ApplicationData

ClientKeyExchange

ChangeCipherSpec

EncrytpedFinished

39

verifies the Finished message. When the message is verified the server responds to the

client with its own ChangeCipherSpec and encrypted Finished message. Again, the

ChangeCipherSpec is not changed and does not need to be stored. The MitM may want

to decrypt the server‟s Finished message if the cipher that is used is a chaining block

cipher, but after that the message can be discarded. Instead, the MitM creates the

Finished hash that corresponds with the messages sent and received by the client,

encrypts it, and sends both the ChangeCipherSpec and encrypted Finished message to the

client. When the client verifies the server‟s Finished message the TLS Handshake is

complete.

The client can now continue with the connection by sending a request for data to

the server, and the server responds with the information. This exchange is encrypted and

seen as Application Data in the TLS connection. Since the MitM has successfully gained

the session keys he has two options. The first is to store all the data sent in the

connection to be decrypted at a later time. The second option is that the MitM can

decrypt the messages live.

40

III. Experimentation

3.1. Research Goal

 When a Man-in-the-Middle (MitM) is able to trick the client into accepting his

own certification he can successfully obtain information from a TLS connection without

a warning being sent to the client. As the protection of data becomes more vital with the

increase of network usage, knowing when an attacker has access to that information is

imperative. The invalid certificate warning is the only active defense mechanism a user

has to know that an attacker is present, and it allows the user the opportunity to

discontinue the connection before any data can be stolen. When the MitM suppresses

this message, the user no longer has a real-time defense against a MitM attack. The goal

of this research is to quantify the delay imposed by a MitM attack. This research will

determine if developing a signature based on the completion time of the TLS handshake

is possible, which will detect a MitM. If discovered, this baseline can potentially be used

to create a secondary defense mechanism after the certificate warning message to alert a

user of a MitM.

3.2. Methodology and Approach

 The experiment for this research involves running three trials four different times,

once for each cipher suite used. Trial 1 is considered to be the baseline of the

experiment. In this first trial, a client connects to a web server using TLS without the

presence of a MitM. Trial 2 adds the MitM as a proxy between the client and server, but

41

without any manipulation of the packets. This trial represents when an attacker has

successfully set himself up as a MitM, but can only read encrypted data from the

connection. Trial 3 is where the MitM effectively obtains the session keys. This trial

represents when a MitM has provided the client with a certificate that does not trip a

warning. In this way the attacker has hidden himself from the user and can now read the

data from the connection in plaintext.

 Each trial consists of 100 TLS connections from the client to the server. This

number is determined based upon the law of large numbers and the central limit theorem.

The law of large numbers states that as a sample size increases the average of the results

gets closer to the expected average value (Hoggs and Tanis, 2006:258). Thus for a

sufficiently large number of connections in each trial, the average should represent a

close approximation to the expected average. The central limit theorem is used to

determine when a sample size is sufficiently large. Generally the theorem notes that if

the sample size is greater than 30, then it is considered to be sufficiently large (Hoggs and

Tanis, 2006:292).

 The data collected for this experiment is the completion time of the TLS

handshake from each of these connections. This time begins with the initial TCP SYN

packet sent by the client and ends when the client sends the first application data packet.

The TCP SYN packet was chosen as the starting point because it is the initial packet sent

to the server by the client. While this message is not considered a part of the TLS

handshake, by starting the time with this packet the collected data encompasses the time

the client takes to form and send the ClientHello. Also since every connection begins

with the TCP three-way handshake, adding the time to complete it does not skew the

42

data. The time ends when the client sends the first application data packet. By sending

this message the client indicates that it has received the final message of the TLS

handshake from the server and has verified all the information from it. Ending the time

with the application data packet guarantees that the time the client takes to verify the final

finish message is incorporated into the collected data.

 The time for each TLS handshake is collected using the network packet analyzer

Wireshark. Wireshark is a tool that displays the details of all the packets that the

machine‟s Network Interface Card (NIC) sees. This display shows each packet in the

TLS connection, allowing for where the handshake begins and where it ends to be easily

discernable. Wireshark also adds a time stamp to each packet as it is captured. The tool

“gets the time stamps form the libcap (WinCap) library,” which supports microsecond

resolution, and in turn gets the time stamps “from the operating system kernel” (Sharpe,

2011).

 Wireshark usually displays the time stamps as the time elapsed since the capture

began. Many options can be set to show different timing, but the most useful is the time

toggle that can be placed on any packet. This toggle sets the time stamp of that packet to

zero and every packet afterwards shows the elapsed time since that toggled packet was

received. Therefore when collecting the data, a toggle can be set on each TCP SYN

packet, handily providing the completion time of the TLS handshake without any

extraneous calculations.

 Finally, the data collection for this experiment occurs on the client machine. The

greatest motivation for collecting the data from the client is found by looking at the long

term goal of this thesis. The hope is that this thesis will provide the stepping stones to

43

one day create a defense mechanism against MitM attacks that will be place on client

machines. If some kind of alert can be created, it will base its warning off of the TLS

handshake timing. Thus the data of this experiment should reflect the timing that the

client should see. The results should not be in the perspective of the server or of a

network node.

3.3. Experiment Set-up

 The implementation for this experiment requires a TCP/IP-enabled test

environment consisting of three separate machines; the server, the client, and the MitM.

For this experiment these machines are isolated on a separate network by themselves.

Each machine is connected to a single switch as represented in Figure 7. This isolated

network allows for more control over the environment. Any incidental factors, such as

high network traffic and router outages, should be limited.

Figure 7. Network Environment for the Experiment

SWITCH

Server

Man-in-the-Middle

Client

44

The server machine must be able to run an SSL/TLS webpage that the client can

connect to. Apache is a free open source HTTP server that runs the webpage on the

server machine. Apache is chosen for this experiment because it is capable of SSL/TLS

connections and it is freely available for download. The software also comes with the

source code which is useful in any possible debugging situations. The operating system

(OS) chosen for the server machine is Ubuntu 10.10. The Ubuntu OS is readily available

and allows for simpler manipulation of the Apache server than what is provided on a

Windows machine. Finally due to convenience, the server is set-up as a virtual machine

using VMWare for this experiment. The fact that the server is virtualized does not affect

the results of this experiment since the data collection is done on the client machine.

 The client machine needs to be able to connect to the server and access the secure

webpage. The client should not be virtualized because it is the machine that the data is

collected from. Since the data that is collected involves timing a virtualized machine can

have unwanted effects on the data that easily be avoided. The client OS must be able to

run Wireshark for data collection and Visual Studio for the script that connects the client

to the server. The client script also uses a WebBrowser control, which is a Windows

Forms that is a wrapper for Internet Explorer. The dependability of the script requires the

client OS to be Windows. The OS used in this experiment is Windows 7, but any recent

Windows OS will suffice.

 The MitM machine must be able to execute all parts of the TLS protocol in order

to successfully obtain the session keys. An attacker needs some tool that gives him the

flexibility to perform each step of the TLS handshake. Scapy is an open source Python

program that provides a myriad of capabilities by enabling “users to send, sniff and

45

dissect, and forge network packets” (Biondi, 2010:3). This program provides many

benefits to this experiment by combining many capabilities into one tool. Thus Scapy is

chosen as the base program to run the MitM scripts that are need. A separate script is

required for both Trial 2 and Trial 3. More information about Scapy and why it was

chosen for this experimentation can be found in Appendix D.

 The OS for the MitM machine is Ubuntu 10.10. This OS is chosen because of the

compatibility of Scapy with Linux environments. While Scapy is available for Windows,

a user has more capabilities and a greater control over the Scapy functionality on Linux

machines. The MitM machine is not virtualized for this experiment, but it could be if

needed since no data is calculated from this machine.

3.4. Parameters and Factors

 The parameters in this experiment encompass the entire network set-up. For each

trial the network configuration stays consistent in order to reduce any environmental

factors that may arise.

 This experiment comprises two separate variables. The first variable is the TLS

connection and the actions made on it. The first trial runs the connection without any

outside influence from a MitM. Trial 2 runs the connection with a MitM as a proxy, but

without any packet manipulation. The final trial is the TLS connection with the MitM as

a proxy performing packet manipulation in order to get the session keys. The second

variable in this experiment is the cipher suite used for each TLS connection. Each trial is

run four times, once for each of the cipher suites dealt with in this experiment. The

46

cipher suites are chosen as a variable in order to determine if the choice of cipher suite

affects the completion time of the TLS connection. The four cipher suites used in this

experiment are tls_rsa_with_aes_128_cbc_sha, tls_rsa_with_rc4_128_md5,

tls_rsa_with_rc4_128_sha, and tls_rsa_with_3des_cbc_sha.

3.5. Assumptions during Experimentation

 Two different assumptions are made during the execution of this experiment. The

first assumption is that the MitM can successfully perform ARP cache poisoning. In

order for an attacker to be a MitM, he needs to redirect all the packets between the client

and the server to his own MitM machine. By sending out gratuitous ARP packets the

MitM can make the client believe that the server‟s IP address is associated with the

MitM‟s MAC address. The attacker repeats this process with the server so that it believes

the client‟s IP address is associated with the MitM‟s MAC address. In this way all

packets go first to the MitM where the MitM can make any changes he needs before

forwarding the packets to the correct entity. Executing the ARP poisoning is possible,

but it is abstracted out for this experiment. Instead static ARP entries are added to the

client and server that mimics a successful ARP poisoning. This abstraction guarantees

that each connection made in Trials 2 and 3 are correctly directed to the MitM.

 The second assumption made in this experiment is that the MitM can create an

appropriate certificate, and he can plant the certificate on the client‟s machine. Due to

time constraints this experiment has the MitM forwarding the server‟s certificate on to

the client without replacing it with his own certificate. Since the server‟s private key is

47

known through the course of this experiment, the MitM can still perform the necessary

calculations to obtain the pre-master secret. While the MitM is not actually replacing the

server‟s certificate, he still performs all necessary calculations as if he did send his own

certificate to the client. If a correctly crafted certificate can be created for the MitM, then

it can replace the server‟s certificate and the script will perform exactly the same. This

simple substitution does not cause any errors or changes to the performance of the MitM.

3.6. Data Representation and Statistical Analysis

 The results of this experiment are presented graphically in two ways. The first

graph chosen is a basic scatter plot. The x-axis represents the 100 TLS connections made

in each trial. The y-axis indicates the time in seconds the TLS handshake took to

complete. Each graph shows the results of multiple data sets at a time. The scatter plot is

chosen as the initial representation of the data because it allows for immediate

observations of the results.

 The second type of graph used is side-by-side box plots. Box plots are used to

graphically display the middle 50% of the collected data, the upper and lower 25% of the

data, and any outliers (Ramsey and Schafer, 2002:17). The box in these graphs

represents the middle 50% of the data, with the horizontal line depicting the median. The

vertical lines, or the whiskers, show the upper and lower 25% of data within 1.5 box

lengths of the box. The dots on the graph represent any outliers that are within the scale

of the graph. Any outliers outside the scale of the y-axis, which represents the time of a

48

connection in seconds, are listed at the top of the graph above the corresponding trial.

The box plot is used because it allows for a simple visual comparison between data sets.

 After the graphs of the data are presented, a statistical summary of each trial is

offered. The first table after the graphs provides statistics on each individual trial. The

first value n is the sample size of the data, which is 100 for each trial. The sample size is

followed by the range of the collected data sets, indicating the minimum and maximum

value. Next comes the average TLS handshake completion time for each trial. The final

value in the table is the standard deviation, which represents the “typical distance

between a single [data point] and the [trial‟s] average” (Ramsey and Schafer, 2002:21).

The standard deviation is calculated as

 (9)

where Y1,…, Yn is the set of numbers in the sample, is the average, and n is the sample

size.

 The second table begins the statistical comparison of each pair of trials. The

results are analyzed using t-distribution inference for two samples. These calculations

enable a conclusion to be made on whether or not the results of the trials are statistically

different or not. The first value given in this second table is the calculated difference

between trials averages, which is calculated as follows:

 (10)

where is the average of trial i and is the average of trial j as found in the first results

table.

49

The next value in the second results table is the pooled standard deviation

calculated using the standard deviation of the two trials being compared. The pooled

standard deviation is calculated as follows:

 (11)

 (12)

where is the sample size and is the standard deviation for trial i and is the sample

size and is the standard deviation for trial j. These values can be found in the first

results table.

 The final column in the second results table is the standard error for differences.

The standard error is “an estimate of the standard deviation in its sampling distribution”

(Ramsey and Schafer, 2002:33). This value is used later in determining if the data

collected from the trials are statistically different. The standard error for the difference of

two averages is calculated as follows:

 (13)

where is the calculated pooled standard deviation for trials i and j, and is the sample

size for trial i and is the sample size for trial j.

 The final table of the statistical summary contains the t-statistic and one-sided

probability value, or p-value, for trials i and j. This table holds the data the represents

whether the trials are significantly different or not. The t-statistic “tells how many

standard errors [an] estimate is away from [a] hypothesized parameter” (Ramsey and

Schafer, 2002:42). For this experiment the estimate is the difference between trial

50

averages calculated in the first table, and the hypothesized value represents the believed

difference of sample means. The t-statistic is calculated as follows:

 (13)

where is the difference between averages as calculated in the first results table,

 is the standard error for difference calculated in the second results table, and

 is the hypothesized difference of sample means. A null hypothesis assumes

that the hypothesized value is zero. In other words, a statistical difference does not exist

between the trials that are being compared. Thus the t-statistic can be recalculated as

follows:

 . (14)

The resulting value of the t-statistic represents how far away the estimated difference of

trail averages is away from the hypothesized mean.

 Once the t-statistic is calculated the p-value is determined, which is the last

column in the final results table. The p-value is defined as “the probability, under the

null hypothesis, that the test statistic is equal to or exceeds the observed value of a test

statistic in the direction of the alternate hypothesis” (Hogg and Tanis, 2006:473). In

other words, the evidence that the null hypothesis is incorrect increases as the p-value

gets smaller. Using the calculated t-statistic and the appropriate degree of freedom, a t-

distribution table can be consulted to determine the p-value.

 Once a p-value is found the result can be used to conclude if the data collected

points to the null hypothesis being true or not. Generally, the smaller the p-value become

the greater the probability that the null hypothesis of no statistical difference is incorrect.

51

For this experiment, the smaller the p-value is the more likely a statistical difference

exists between the trials that are being compared. The larger the p-value the more likely

the data between the trials have no statistical difference. Figure 8 represents how a p-

value size should be interpreted.

Figure 8. Interpretation of the p-Value (Hogg and Tanis, 2006:47)

The final two tables of the statistical summary should be read as follows. The first

column and the second row indicate the trial or cipher suite data that is being compared.

The intersection of a certain column and row gives the result of the particular calculation

based upon those two trials.

3.7. Expected Results

 The results of this experiment are expected to illustrate a statistical difference in

connection times between each trial. Trial 1 is the baseline and should take the least

amount of time because changes are not made in how the TLS connection. The packets

p-value

No Suggestive, but

inconclusive
Moderate

Convincing

0 .01 .05 .10 1

52

in this trial travel directly between the client and server. Trial 2 should show a significant

difference compared to Trial 1 because all of the packets are being routed through the

MitM before arriving at their destination. The timing results between Trial 2 and Trial 3

should show some variation as the MitM has to perform extra calculations because it is

recreating TLS handshake packets to send to the client and server. Whether this

difference is significant will have to be determined by looking at the results of the

experiment. A statistical difference is expected to be observed between Trial 1 and Trial

3 because the greatest change to the TLS connection occurs between these two trials.

The observations from all of the trial comparisons should hopefully point to a time

threshold that a client can use to determine if a MitM exists and if the MitM has access to

the session keys.

 Slight timing variations are expected to be observed between the trials with the

use of different cipher suites. These variations are expected to be minimal and show no

significant difference. While some algorithms in the cipher suites require more

calculations and time to complete, the difference between the algorithms should not be

observable.

53

IV. Results and Analysis

This chapter provides the results of the experiment described in Chapter III and is

divided into three major sections. The first portion presents the results in several groups,

providing graphical representations of the data, a statistical summary, and analysis of the

results. The chapter then concludes with a discussion of the findings from this

experiment.

4.1. Results

4.1.1. AES-128 CBC with SHA.

 This first data group represents Trials 1, 2, and 3 executed with the TLS cipher

suite tls_rsa_with_aes_128_cbc_sha. Figure 9 provides a scatter plot of the data points

for these trials. Initial observations indicate a statistical difference between Trial 1 and

the other two trials. A comparison of the data between Trial 2 and Trial 3 has a less

distinct variance, but a general observation can be made that the times in Trial 3 are

greater than those from Trial 2.

The next graph shown in Figure 10 has the box plots for the three trials. This

graph illustrates more distinctly the large variance between Trial 1 and the other two

trials. The box plots also provide a better visual comparison of Trials 2 and 3. This

graph shows that while the upper 25% of Trial 2 and the lower 25% of Trial 3 overlap,

the middle 50% of the two data sets do not intersect. While this graph shows a difference

54

Figure 9. Scatter Plot of TLS Handshake Times – AES-128 CBC with SHA

between Trials 2 and 3, nothing conclusive can be determined at this point without a

statistical analysis.

 Tables 4, 5, and 6 provide the statistical summary of this group of data. The p-

values in Table 6 show that comparing Trial 1 with Trial 2 and Trial 1 with Trial 3 results

in a very small. This small value means that the likelihood that the null hypothesis is

incorrect is very high. The p-value from the comparison of Trial 2 and Trial 3 is 0.08,

which is very close to 1. This large p-value means that the null hypothesis is highly

probably for this comparison. By these results one can conclude that the Trials 1 and 2

and Trials 1 and 3 are statistically different while Trials 2 and 3 are not.

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

Ti
m

e
 (

s)

Connection

Trial 1

Trial 2

Trial 3

55

Figure 10. Box Plot – AES-128 CBC with SHA

Table 4. Statistical Results Table 1 for AES-128 CBC with SHA

Trial n Range (s) Average (s) Standard Deviation

1 100 0.005929 - 0.039392 0.016189 0.003504

2 100 0.287941 – 2.79182 0.306481 0.248704

3 100 0.300566 – 2.254541 0.373043 0.218020

Table 5. Statistical Results Table 2 for AES-128 CBC with SHA

Trial Difference between Trial

Averages

Pooled Standard

Deviation

Standard Error for

Differences

 Trial 2 Trial 3 Trial 2 Trial 3 Trial 2 Trial 3

1 0.290292 0.356854 0.249994 0.219158 0.035354 0.030994

2 0.066562 0.332419 0.047011

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Trial 1 Trial 2 Trial 3

Ti
m

e
 (

s)

Outlier -
(2.764846)

Outliers - (0.580457, 0.591122,
0.636373, 0.638454, 1.141571,
2.254541)

56

Table 6. Statistical Results Table 3 for AES-128 CBC with SHA

Trial t-statistic for Null Hypothesis One-sided p-value

 Trial 2 Trial 3 Trial 2 Trial 3

1 8.210952 11.513648 << 0.001 <<< 0.001

2 1.415881 0.08

4.1.2. RC4-128 with MD5.

 This group of data consists of Trials 1, 2, and 3 executed with the TLS cipher

suite tls_rsa_with_rc4_128_md5. Figure 11 is the scatter plot of these data sets. Like the

previous data group, a significant difference is seen between Trial 1 and the other two

trials. The graph for this group though shows the results of Trial 2 and Trial 3 to be very

similar to one another. No variation between the two trials can be seen in this graph.

 Like the previous data group, the scatter plot shows a few outliers for Trial 2 and

Trial 3. These outliers are most likely due to the performance of the MitM machine.

Unlike the other graph though, this scatter plot show more variation among the data

points for Trial 1. Ten time stamps for the TLS handshake are noticeable higher than the

rest of the results, but these ten data points are comparable to each other. In Wireshark

the extra time delay for these points are noticed between when the server sends the

acknowledgement of the ClientKeyExchange, ChangeCipherSpec, and encrypted

Finished messages and when the server sends its own ChangeCipherSpec and encrypted

Finish messages. Between these messages the server is verifying the client‟s finished

message and creating its own. A delay may occur when the server machine is calculating

the algorithms to perform this task.

57

Figure 11. TLS Handshake Times – RC4-128 with MD5

 The next graph is the box plot for this data group, as seen in Figure 12. An initial,

visual observation from this graph would conclude that Trial 1 and 2 and Trial 1 and 3

are significantly different, but that Trial 2 and Trial 3 are not. The boxes for both Trial 2

and Trial 3 are almost identical in placement, which means that the middle 50% of the

data from these sets are within the same range.

 Tables 7, 8, and 9 give the statistical summary of the data in this group. Table 9

gives the p-values for the data sets. The p-values for the comparison of Trial 1 and 2 and

Trial 1 and 3 are very small. Thus a conclusion can be made that the results between

these trials are statistically different. The p-value for the comparison of Trial 2 and 3 is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

Ti
m

e
 (

s)

Connection

Trial 1

Trial 2

Trial 3

58

Figure 12. Box Plot – RC4-128 with MD5

Table 7. Statistical Results Table 1 for RC4-128 with MD5

Trial n Range (s) Average (s) Standard Deviation

1 100 0.014385 – 0.063003 0.022552 0.012272

2 100 0.282672 – 0.628100 0.311667 0.043240

3 100 0.282164 – 0.573368 0.309632 0.031304

Table 8. Statistical Results Table 2 for RC4-128 with MD5

Trial Difference between sample

averages

Pooled Standard

Deviation

Standard Error for

differences

 Trial 2 Trial 3 Trial 2 Trial 3 Trial 2 Trial 3

1 0.289115 0.287080 0.045176 0.033795 0.006388 0.004779

2 0.002035 0.053654 0.007588

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Trial 1 Trial 2 Trial 3Ti
m

e
 (

s)

Outliers - (0.550903, 0.6281)
Outlier- (0.573368)

59

Table 9. Statistical Results Table 3 for RC4-128 with SHA

Trial t-statistic for Null Hypothesis One-sided p-value

 Trial 2 Trial 3 Trial 2 Trial 3

1 45.259080 60.071145 <<<<< 0.001 <<<<< 0.001

2 0.268187 0.395

0.395, which is a very large number. A conclusion can be made that the results between

these two data sets are not significantly different.

4.1.3 RC4-128 with SHA.

 The data represented in this group are Trials 1, 2, and 3 executed with the TLS

cipher suite tls_rsa_with_rc4_128_sha. The first graph presented in Figure 13 is the

scatter plot for this data series. The scatter plot shows similar trends compared with the

previous scatter plots from the other groups. The results of Trial 1 are significantly less

than those of Trial 2 and Trial 3. The data from Trial 2 and Trial 3 are very similar, but

the results from Trial 3 are observably larger than those of Trial 2. Outliers for Trial 2

and Trial 3 are minimal in this graph. The outliers for Trial 1 follow the same trend as

seen in the scatter plot for the trials executed with RC4-128 with MD5.

 The next graph presented is the box plots of the data found in Figure 14. The box

pot of Trial 1 is obviously different from the box plots of Trial 2 and 3. The box plots of

Trial 2 and 3 show some variance, but are very close in location. The entire box of Trial

3 overlaps with the upper whisker of Trial 2. This intersection means that 50% of the

data from Trial 3 lies in the same range as the upper 25% of the data from Trial 2.

60

Figure 13. TLS Handshake Times – RC4-128 with SHA

 Tables 10, 11, and 12 are statistical summaries of the data sets in this group.

Table 12 contains the p-values of the trial comparisons. The three p-values in this table

are all less than 0.001. The conclusion made from this analysis is that all the trials are

statistically different from each other. This data group is the first to show a statistical

difference between Trials 2 and 3.

4.1.4. 3DES CBC with SHA.

 The data represented in this group are Trials 1, 2, and 3 executed with the TLS

cipher suite tls_rsa_with_3des_cbc_sha. Figure 14 is the scatter plot for this data series.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

Ti
m

e
 (

s)

Connection

Trial 1

Trial 2

Trial 3

61

Figure 14. Box Plot – RC4-128 with SHA

Table 10. Statistical Results Table 1 for RC4-128 with SHA

Trial n Range (s) Average (s) Standard Deviation

1 100 0.012953 – 0.064075 0.022609 0.010416

2 100 0.248589 – 0.443749 0.273708 0.023090

3 100 0.283651 – 0.572478 0.307269 0.031650

Table 11. Statistical Results Table 2 for RC4-128 with SHA

Trial Difference between sample averages Pooled SD SE for differences

 Trial 2 Trial 3 Trial 2 Trial 3 Trial 2 Trial 3

1 0.251099 0.284660 0.025460 0.033489 0.003601 0.004736

2 0.033561 0.039377 0.005569

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Trial 1 Trial 2 Trial 3

Ti
m

e
 (

s)

Outlier - (0.572478)

62

Table 12. Statistical Results Table 3 for RC4-128 with SHA

Trial t-statistic for Null Hypothesis One-sided p-value

 Trial 2 Trial 3 Trial 2 Trial 3

1 69.730353 60.105574 <<<<< 0.001 <<<<< 0.001

2 6.026396 << 0.001

Figure 15. TLS Handshake Times – 3DES with SHA

Visual observation concludes that Trial 1 is significantly different from Trial 2 and 3.

The data from Trial 2 and 3 show a similar trend with the data from Trial 3 being slightly

higher than those from Trial 2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

Ti
m

e
 (

s)

Connection

Trial 1

Trial 2

Trial 3

63

 Outliers are minimal on this graph for Trials 2 and 3 and show similar tendencies

as compared with the previous scatter plots. The data results from Trial 1 also show a

similar pattern with a few points being noticeable higher than the rest, but comparable to

each other. This scatter plot though shows one major outlier from Trial 1 that has not

been seen previously. Upon investigation into the raw Wireshark capture, the delay is

noticed at the same point in the TLS handshake as the other minor outliers. A larger

elapsed time is visible between when the server sends the acknowledgement of the

ClientKeyExchange, ChangeCipherSpec, and encrypted Finished messages and when the

server sends his own ChangeCipherSpec and encrypted Finished messages.

 The box plots for this data series can be found in Figure 15. As previously noted

in other box plots, Trial 1 is observably different from those of Trial 2 and 3. The box

plots for Trial 2 and 3 in this graph show a slightly greater variation as compared to the

previous box plot. The actual boxes for these trials do not overlap. The upper whisker

for Trial 2 lands about halfway between the box for Trial 3. Thus an observation can be

made that a difference between the trials are seen, but statistical analysis is needed to

determine if they are significantly different.

 The statistical summary for this data series can be found in Table 13, 14, and 15,

with the p-values in Table 15. The p-values for the trial comparisons are all less than

0.001. These small p-values can lead to the conclusion that the trials run using 3DES

with SHA are all statistically different. This data group is the second of the four that

shows a statistical difference between Trial 2 and 3.

64

Figure 16. Box Plot – 3DES with SHA

Table 13. Statistical Results Table 1 for 3DES with SHA

Trial n Range (s) Average (s) Standard Deviation

1 100 0.015271 -0.523500 0.028015 0.051279

2 100 0.249670 – 0.441234 0.273330 0.023713

3 100 0.282544 – 0.549208 0.309363 0.033333

Table 14. Statistical Results Table 2 for 3DES with SHA

Trial Difference between

sample averages

Pooled Standard

Deviation

Standard Error for

differences

 Trial 2 Trial 3 Trial 2 Trial 3 Trial 2 Trial 3

1 0.245315 0.281348 0.056184 0.061472 0.007946 0.008693

2 0.036033 0.041115 0.005815

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Trial 1 Trial 2 Trial 3

Ti
m

e
 (

s)

Outlier - (0.5235) Outlier - (0.549208)

65

Table 15. Statistical Results Table 3 for 3DES with SHA

Trial t-statistic if no difference in times One-sided p-value

 Trial 2 Trial 3 Trial 2 Trial 3

1 30.872766 32.364891 <<<<< 0.001 <<<<< 0.001

2 6.196561 << 0.001

4.1.5. Comparison of Trial 1.

 This next comparison of data looks at Trial 1 across the four different cipher

suites. This section, along with the two following, is used to determine if a statistical

difference is incurred based on the use of different cipher suites. The scatter plot of all

Trial 1s is found in Figure 17. A visual inspection of this graph shows all the data points

for each cipher suite to be generally the same. Three of the four data sets have the same

minimal outliers with the trial run with 3DES having one major outlier.

 Figure 18 is the box plots of all the Trial 1s. An observation based upon this

graph can be made that the results from each data set are very similar. Visually the

results from the cipher suite with AES-128 seem to be slightly lower than the rest of the

box plots. The middle 50% box for the AES-128 data does not overlap with the boxes

from any other Trial 1, but the upper whisker lies in the same range as the rest of the

boxes. The middle 50% ranges for the other three Trial 1s are nearly identical.

 Tables 16, 17 and 18 represent the statistical summary of all Trial 1s. Table 18

contains the p-values for the comparisons of the different trials. The p-value between the

cipher suite using AES-128 and the cipher suites using RC4-128 are very small. The low

values strongly imply that the data between these trials are statistically different. The p-

value between the cipher suite using AES-128 and 3DES is 0.054. While this value is

66

Figure 17. TLS Handshake Times – Trial 1

small enough to suggest that the data sets might be different, the value cannot be used to

make a conclusive decision on the data. The p-values for the rest of the trial comparisons

are very large, which means that these data sets are not statistically different from one

another.

4.2.6. Comparison of Trial 2.

 The data sets compared in this section are all Trial 2s executed with the different

cipher suites. The scatter plot for these trials is in Figure 19. A visual observation of this

graph can conclude that all the data sets are similar to each other. Only one major outlier

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

Ti
m

e
 (

s)

Connection

AES-128 with SHA

RC4-128 with MD5

RC4_128 with SHA

3DES with SHA

67

Figure 18. Box Plot for Trial 1 across all Cipher Suites

Table 16. Statistical Results Table 1 for No MitM Action across Cipher Suites

Cipher Suite n Range (s) Average (s) Standard

Deviation

AES-128 CBC with SHA 100 0.005929 - 0.039392 0.016189 0.003504

RC4-128 with MD5 100 0.014385 – 0.063003 0.022552 0.012272

RC4-128 with SHA 100 0.012953 – 0.064075 0.022609 0.010416

3DES with SHA 100 0.015271 -0.523500 0.028015 0.051279

exists for Trial 2 run with the AES-128 cipher suite. Figure 20 is the side-by-side

comparison of the box plots for these trials. Unlike the scatter plot, this graph illustrates

the variance between the data sets. The results from the trial run with 3DES is observed

0.01

0.02

0.03

0.04

0.05

0.06

0.07

AES-128 with SHA RC4-128 with MD5 RC4-128 with SHA 3DES with SHA

Ti
m

e
 (

s)

68

Table 17. Statistical Results Table 2 for No MitM Action across Cipher Suites

Cipher

Suite

Difference between sample

averages

Pooled Standard Deviation

 RC4-128

/MD5

RC4-128

/SHA

3DES

/SHA

RC4-128

/MD5

RC4-128

/SHA

3DES

/SHA

AES/SHA 0.006360 0.006420 0.011826 0.012827 0.011046 0.051657

RC4/MD5 0.000057 0.005463 0.016178 0.052992

RC428/SHA 0.005406 0.052590

 Standard Error for differences

AES/SHA 0.001814 0.001562 0.007305

RC4/MD5 0.002288 0.007494

RC4/SHA 0.007437

Table 18. Statistical Results Table 3 for No MitM Action across Cipher Suites

Cipher

Suite

t-statistic for Null Hypothesis One-sided p-value

 RC4/MD5 RC4/SHA 3DES/SHA RC4/MD5 RC4/SHA 3DES/SHA

AES/SHA 3.506064 4.110115 1.618891 0.0003 < 0.001 0.054

RC4/D5 0.024913 0.728983 0.490 0.234

RC4/SHA 0.726906 0.236

to be the data set with the smallest time values followed by the results from the trial with

AES. The two trials using the RC4 cipher are visually similar based upon the box plots.

 The statistical summary for these data series is found in Table 19, 20, and 21 with

the p-values in Table 21. Only the p-values for the comparisons of the two RC4 ciphers

and the comparison of the RC4 with MD5 and 3DES cipher suites are small enough to

suggest that these data results are statistically different. The remaining p-values are all

very large, which leads to the conclusion that the rest of the data sets have no significant

difference when compared to each other.

69

Figure 19. TLS Handshake Times – Trial 2

4.2.7. Comparison of Trial 3.

 This section looks at the results of all Trial 3s from the four different cipher

suites. The scatter plot for these data sets is in Figure 21. The scatter plot reveals that the

results are nearly identical across the different instances of Trial 3. The only variation

seen between the trials is that the trial using AES-128 has more outliers than the others.

These outliers might be seen with one cipher suite and not the others because the MitM

machine at times may have required more computations to encrypt using one cipher

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

Ti
m

e
 (

s)

Connection

AES-128 with SHA

RC4-128 with MD5

RC4-128 with SHA

3DES with SHA

70

Figure 20. Box Plot – Trial 2

Table 19. Statistical Results Table 1 for a Passive MitM across Cipher Suites

Cipher Suite n Range (s) Average

(s)

Standard

Deviation

AES-128 CBC with SHA 100 0.287941 – 2.79182 0.306481 0.248704

RC4-128 with MD5 100 0.282672 – 0.628100 0.311667 0.043240

RC4-128 with SHA 100 0.248589 – 0.443749 0.273708 0.023090

3DES with SHA 100 0.249670 – 0.441234 0.273330 0.023713

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

AES-128 with SHA RC4-128 with MD5 RC4-128 with SHA 3DES with SHA

Ti
m

e
 (

s)
Outlier - (2.764846)

71

Table 20. Statistical Results Table 2 for a Passive MitM across Cipher Suites

Cipher

Suite

Difference between sample

averages

Pooled Standard Deviation

 RC4-128

/MD5

RC4-128

/SHA

3DES

/SHA

RC4-128

/MD5

RC4-128

/SHA

3DES

/SHA

AES/SHA 0.004886 0.033773 0.033151 0.23720 0.251045 0.251103

RC4/MD5 0.037959 0.038337 0.049268 0.049566

RC428/SHA 0.000378 0.033266

 Standard Error for differences

AES/SHA 0.033545 0.035503 0.035511

RC4/MD5 0.006968 0.007010

RC4/SHA 0.004705

Table 21. Statistical Results Table 3 for a Passive MitM across Cipher Suites

Cipher

Suite

t-statistic for Null Hypothesis One-sided p-value

 RC4/MD5 RC4/SHA 3DES/SHA RC4/MD5 RC4/SHA 3DES/SHA

AES/SHA 0.145655 0.951271 0.933541 0.442 0.172 0.173

RC4/D5 5.447618 5.468902 < 0.001 < 0.001

RC4/SHA 0.080340 0.468

compared to another. These outliers can also indicate that some interference occurred

when the Trial 3 was run with AES-128 that did not manifest with the other trials.

 The side-by-side box plots for the four Trial 3s are in Figure 22. The observation

made from the box plots is that the trial executed with AES-128 produced larger data

values than the other three trials. The box plot most likely reflects the outliers seen in the

scatter plot. The other three Trial 3s using the two RC4 ciphers and the 3DES cipher

seem nearly identical. The middle 50% represented by the boxes for these trials have

very similar data ranges. Thus a conclusion based on the box plots is that the trial

executed with AES may be statistically different from the others while no difference is

seen in the remaining three trials.

72

Figure 21. TLS Handshake Times – Trial 3

 The statistical summary of the four Trial 3s is found in Tables 22, 23, and 24 with

the p-values residing in Table 24. The p-values comparing the trial using AES-128 with

the other three trials are 0.024, 0.019, and 0.023. The interpretation for these values is

that the probability that the null hypothesis of no difference is incorrect is moderate but

not convincing. Thus while these values highly suggest that the data series are different,

they are not small enough to give a persuasive conclusion. The p-values comparing the

final three cipher suites are very large, which indicates that these results are not

statistically different.

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Ti
m

e
 (

s)

Connection

AES-128 with SHA

RC4-128 with MD5

RC4-128 with SHA

3DES with SHA

73

Figure 22. Box Plot – Trial 3

Table 22. Statistical Results Table 1 for an Active MitM across Cipher Suites

Cipher Suite n Range (s) Average (s) Standard

Deviation

AES-128 CBC with SHA 100 0.300566 – 2.254541 0.373043 0.218020

RC4-128 with MD5 100 0.282164 – 0.573368 0.309632 0.031304

RC4-128 with SHA 100 0.283651 – 0.572478 0.307269 0.031650

3DES with SHA 100 0.282544 – 0.549208 0.309363 0.033333

0.26

0.31

0.36

0.41

0.46

0.51

0.56

0.61

0.66

AES-128 with SHA RC4-128 with MD5 RC4-128 with SHA 3DES with SHA

Ti
m

e
 (

s)

Outliers - (1.141571, 2.254541)

74

Table 23. Statistical Results Table 2 for an Active MitM across Cipher Suites

Cipher

Suite

Difference between sample

averages

Pooled Standard Deviation

 RC4-128

/MD5

RC4-128

/SHA

3DES

/SHA

RC4-128

/MD5

RC4-128

/SHA

3DES

/SHA

AES/SHA 0.063411 0.065774 0.063680 0.221377 0.221426 0.221676

RC4/MD5 0.002363 0.000269 0.044742 0.045960

RC428/SHA 0.002094 0.046199

 Standard Error for differences

AES/SHA 0.031307 0.031313 0.031350

RC4/MD5 0.006327 0.006500

RC4/SHA 0.006534

Table 24. Statistical Results Table 3 for an Active MitM across Cipher Suites

Cipher

Suite

t-statistic for Null Hypothesis One-sided p-value

 RC4/MD5 RC4/SHA 3DES/SHA RC4/MD5 RC4/SHA 3DES/SHA

AES/SHA 2.005458 2.100533 2.031260 0.024 0.019 0.023

RC4/D5 0.373479 0.041385 0.355 0.484

RC4/SHA 0.320478 0.375

4.2. Result Findings

 This discussion on the findings of this experiment begins with the comparisons of

Trials 1, 2, and 3. For each cipher suite used Trial 1 was found to be statistically

different from Trials 2 and 3. For the trials using RC4-128 with SHA and 3DES CBC

with SHA, the p-values provide a convincing argument that the results from Trials 2 and

3 are significantly different. The p-values comparing Trials 2 and 3 using AES-128 with

SHA and RC4-128 with MD5 though suggests a high probability that no statistical

difference is evident between the trials.

75

 A number of conclusions can be drawn from these results. The first conclusion is

that no matter if a MitM is reading encrypted data or plaintext from a TLS connection,

his presence can be detectable based upon the timing of the TLS handshake. The results

of Trial 1 do showcase few outliers, but in general if a TLS handshake takes a significant

amount of time longer than average the probability that a MitM is on the connection is

very high. The results can point to a timing threshold that the client can use to monitor

the TLS handshake and close the connection when it suspects that a MitM is present. In

this way a client machine would be able to prevent any more data loss to a MitM that

would have been exchanged during the application data portion of the TLS connection.

Further study needs to be conducted to find the exact value of this threshold and to

determine what other network factors could cause this same type of delay.

 The second conclusion that can be drawn from only these findings is that whether

the client is able to detect if a MitM has obtained the session keys or not is inconclusive.

A statistical difference was noticed between Trials 2 and 3 using the cipher suites RC4-

128 with SHA and 3DES CBC with SHA. This result suggests that a timing threshold to

determine an active MitM compared to a passive MitM may be possible. By taking into

consideration that Trials 2 and 3 showed no statistical difference for the cipher suites

AES-128 CBC with SHA and RC4-128 with MD5 makes the possibility of finding this

threshold undeterminable. The question that arises with these results is determining what

factors caused a variation between the cipher suites. If the use of any one of the four

cipher suites used in this experiment is shown to have no effect on the resulting data, then

further study needs to be conducted to determine what is causing the variation in the

observed results.

76

 The next part of this discussion analyzes the comparison results between each

cipher suite. As seen by the findings of the trial comparisons, these results can help to

conclude if a timing threshold to determine an active MitM can be established. Again, if

no statistical difference is found between the different uses of the cipher suites, then the

cipher suites do not affect the timing results of the TLS handshake. Looking at the

results for the baseline, the data from Trial 1 with AES-128 CBC with SHA is

significantly different compared to the Trial 1 from the other cipher suites. This finding

suggests that using the AES-128 CBC with SHA may affect the timing results, where the

other cipher suites do not. If this statement is true then this trend should be seen with the

use of AES-128 CBC with SHA in Trials 2 and 3.

 When inspecting the findings comparing the results of Trial 2 though, only the use

of the cipher RC4-128 with MD5 is seen to have a statistical difference from the use of

the cipher suites RC4-128 with SHA and 3DES CBC with SHA. This result was not seen

in the findings of Trial 1, which would indicate that RC4-128 with MD5 affects the

outcome of the TLS handshake timing. Since this variance is first seen in Trial 2, a look

at the results of Trial 3 is needed to determine if the cipher suite or another factor is

resulting in the discrepancy.

 For Trial 2, the AES-128 CBC with SHA cipher suite no longer shows any

statistical difference when compared with the other cipher suites. If this cipher suite was

affecting the results of the TLS handshake, the statistical difference should have been

carried over from Trial 1 into Trial 2. Since this variation is no longer evident, this

finding points to some other factor that may be altering the outcome of the data.

77

 Looking at the results for Trial 3 shows that a moderately high probability exists

that using the AES-128 CBC with SHA cipher suite results in significantly different data

compared with the other cipher suites. This probability is not as conclusive as that seen

in Trial 1, but lends to the tendency that the AES-128 cipher affects the TLS timing

results. If this theory is correct though, this same difference should have been seen in

Trial 2. Further study needs to be conducted to determine what is causing the AES-128

CBC with SHA to be statistically different in Trials 1 and 3 but not Trial 2. Some

unknown factor could be playing a role in these findings, but that factor is

undeterminable at this time.

 The rest of the cipher suites used in Trial 3 are seen as having no statistical

difference from one another. This finding shows the anomaly seen with the RC4-128

with MD5 cipher suite in Trial 2. If the same statistical difference seen in Trial 2 carried

over into Trial 3, then a conclusion can be made that the performance of the MitM

machine with this cipher suite is causing the difference in results. Since the RC4-128

with MD5 has not statistical difference when compared with RC4-128 with SHA and

3DES CBC with SHA, then some other factor must be influencing the results in Trial 2.

Further study is needed to determine the nature of this factor.

 The only two cipher suites that showed no statistical difference between each

other through all three trials are the RC4-128 with SHA and 3DES CBC with SHA cipher

suites. This finding can be used with those in the first part of this discussion to conclude

that a timing threshold may actually be possible to establish. From the first part of this

section, the results showed that Trials 2 and 3 were not statistically different when using

the two above cipher suites. Since no statistical difference could be found in whether the

78

RC4-128 with SHA or 3DES CBC with SHA cipher suite was used, then the previous

result seen between Trials 2 and 3 can be attributed to the manipulations the MitM is

performing on the packets. This finding lends credit to the theory that a constant timing

threshold to detect when a MitM has obtained the TLS session keys may be calculable.

Since this result could not be concluded for the use of all cipher suites, further study is

needed in order to conclusively assert this theory.

79

V. Conclusions and Recommendations

5.1. Conclusions

 The Transport Layer Security protocol is a vital component to the protection of

data as it traverses across networks. Protecting sensitive data from Man-in-the-Middle

attacks is imperative to keeping the information secure. This thesis illustrates how an

attacker can successfully perform a MitM attack against a TLS connection without

alerting the user to his activities. By deceiving the client machine into using a false

certificate, an attacker takes away the only active defense mechanism a user has against a

MitM. The goal for this research is to determine if a time threshold exists that can

indicate the presence of a MitM in this scenario. Any conclusive finding supporting the

existence of a timing baseline can be considered the first steps toward finding the value

of the threshold and creating a second layer defense to actively protect against a MitM.

 The experiment for this thesis involves comparing the TLS handshake completion

times from three different trials. Trial 1 is considered the baseline where a clear TLS

connection is made without any MitM manipulation. Trial 2 adds the MitM as a proxy

between the client and the server. The MitM in this trial is forwarding the packets

without making any alterations to them. The final trial, Trial 3, has the MitM as a proxy

between the client and the server where he is manipulating packets in order to obtain the

session keys. The results from these trials are used to determine if a client can potentially

differentiate between a clean TLS connection and a connection with a MitM and whether

or not the client can differentiate between an active and a passive MitM.

80

 Each of the three trials is run four different times, once for each cipher suite used

in this experiment. The four cipher suites are tls_rsa_with_rc4_128_md5,

tls_rsa_with_rc4_128_sha, tls_rsa_with_aes-128_cbc_sha, and

tls_rsa_with_3des_cbc_sha. A comparison of the cipher suites is used to determine if the

results collected are influenced differently based upon the chosen cipher suite. No

statistical difference between the cipher suites means that any statistical difference found

between the three trials is most likely influenced by the MitM‟s involvement in the TLS

connection.

 The results from each trial were collected and compared to determine if the data

sets can be considered statistically different. Table 25 gives a high level account of the

comparison of the results between the three trials. Table 26 gives the high level account

of the comparison of the results between the cipher suites.

Table 25. Results of Comparisons between Different MitM Involvment Indicating

Probability of Statistical Difference

Trial AES-128/SHA RC4-128/MD5 RC4-128/SHA 3DES/SHA

 Trial 2 Trial 3 Trial 2 Trial 3 Trial 2 Trial 3 Trial 2 Trial 3

1 Y Y Y Y Y Y Y Y

2 N N Y Y

(Y=Yes, N=No)

 The first conclusion that can be made based upon the results is that a threshold

can be calculated that will indicate the probability that a TLS connection is clean and

when a MitM is present. This finding is based on the result that Trial 1 is statistically

81

Table 26. Results of Comparisons between Cipher Suites Indicating Probability of

Statistical Difference

Cipher

Suite

Trial 1 Trial 2 Trial 3

 RC4

/MD5

RC4

/SHA

3DES

/SHA

RC4

/MD5

RC4

/SHA

3DES

/SHA

RC4

/MD5

RC4

/SHA

3DES

/SHA

AES

/SHA

Y Y S N N N M M M

RC4

/MD5

 N N Y Y N N

RC4

/SHA

 N N N

(Y=Yes, N=No, S=Suggestive, M=Moderate)

different from Trials 2 and 3 for all cipher suites. This result does not specify if a

threshold can be calculated that can determine if the MitM is active or passive.

 The second conclusion is that a threshold to differentiate between an active and a

passive MitM likely exists, but further study needs to be conducted to find anything

conclusive. Only half of the cipher suites had the results of Trial 2 and 3 as statistically

different. When reviewing the comparisons of the cipher suites, these same two cipher

suites were not statistically different for any trial. By the results from these two cipher

suites alone a conclusion can be made that a threshold is determinable. The fact that no

statistical difference was recorded between the two cipher suites indicates a high

probability that the statistical difference observed between their Trials 2 and 3 is due to

the MitM.

 When consulting the results from using the cipher suite AES-128 and RC4-128

with MD5, the conclusion that a threshold to determine an active versus a passive MitM

weakens. The comparisons of Trials 2 and 3 for these results show now statistical

82

difference. The comparisons of the cipher suites themselves show intermittent statistical

differences across the three trials. To conclude that the results are statistically different

due to the use of a cipher suite requires a statistical difference between cipher suites in all

three trials. This trend is not seen with either of these two cipher suites. Thus a

conclusion can be made that some other environmental factor may have caused the

observed results.

 Two final conclusions can be made for this experiment. The first is that a

threshold can be calculated in order to determine the presence of a MitM. This result

means that a client can potentially use the threshold value to determine the likelihood of a

MitM no matter if he is reading encrypted data or plaintext. The second conclusion is

that while a calculable threshold to differentiate between an active and a passive MitM

seems likely, further study needs to be conducted to strengthen this deduction.

5.2. Recommendations

 This experiment is thought of as a building block for further study and

experimentation. In that light, recommendations for future work are made, some based

on limitations and findings from this experiment and the other based on how the

experiment can be expanded.

1. Repeat experimentation to collect more data

This experiment only executed Trials 1, 2, and 3 once for each cipher suite.

This small amount of data proved to be a limitation to the analysis of the

results. If the experiment can be repeated running each trial multiple times

83

per cipher suite, stronger conclusions can be made. More data points might

have allowed for an explanation of the unexpected results from this

experiment. More data could also lead to the discovery that a cipher suite is

or an unknown environmental factor is affecting the results.

2. Analyze more cipher suites

This experiment only focused on four out of the many possible TLS cipher

suites that can be used. While this thesis is a great starting point, an analysis

of all possible cipher suites is needed in order to make a conclusion on

whether each cipher suites affect the results differently. Once this conclusion

can be made, whether a separate threshold value for each cipher suite or a

constant threshold value is required can be determined.

3. Determine environmental factors on isolated network

This experiment was conducted on an isolated network with only three

machines and a switch. A limitation of this experiment is the assumption that

this isolated network meant that the environmental factors were very minimal

and would not affect the resulting data. This experiment can be improved if

all the environmental factors on this isolated network and their influence on

the data can be determined.

4. Add network variability

As mentioned in the previous recommendation, this experiment was

conducted on an isolated network containing three machines and a switch.

Once all the environmental factors can be determined for the isolated network

the next step would be to add more environmental factors that are seen

84

normally on a live network. These factors can include the level of network

traffic and the distance between nodes. The effect of these new factors on the

TLS connections needs to be studied as well.

5. Determine the threshold value

This experiment only asks the question of whether or not the threshold to

determine a MitM exists. Calculating the value of this threshold is outside the

scope of this experiment and is left for future work. Once this value is

calculated, it can be used in further experimentation and study.

6. Determine the probability that timing delay is due to a MitM

Once a threshold value can be determined the next step is to calculate the

probability that a connection time higher than the threshold is actually caused

by a MitM and not an environmental factor. If the probability that a MitM

causes a time delay above the threshold is only 50% the any defense

mechanism based of this threshold will have a lot of false positives. This

probability needs to be determined to know if the threshold value might have

any useful application

85

Appendix A: TLS Protocol Error Alert Types

Parameters Definitions

unexpected_error An inappropriate message was received. This alert is always

fatal and should never be observed in communication

between proper implementations.

bad_record_mac This alert is returned if a record is received with an incorrect

MAC. This alert also must be returned if an alert is sent

because a TLSCiphertext decrypted in an invalid way. This

message is always fatal and should never be observed in

communication between proper implementation.

decryption_failed This alert was used in some earlier versions of TLS, and may

have permitted certain attacks against the CBC mode. It

must not be sent by compliant implementations.

record_overflow A TLSCiphertext record was received that had a length more

than 2^14 + 2048 bytes, or a record decrypted to a

TLSCompressed record with more than 2^14 + 1024 bytes.

This message is always fatal and should never be observed in

communication between proper implementations.

decompression_failure The decompression function received improper input. This

message is always fatal and should never be observed in

communication between proper implementations.

handshake_failure Reception of a handshake_failure alert message indicates that

the sender was unable to negotiate an acceptable set of

security parameters given the option available. This is a fatal

error.

no_certificate_ This alert was used in SSLv3 but not any versions of TLS. It

must not be sent by compliant implementations.

bad_certificate A certificate was corrupt, contained signatures that did not

verify correctly, etc.

unsupported_certificate A certificate was of an unsupported type.

certificate_revoked A certificate was revoked by its signer.

certificate_expired A certificate has expired or is not currently valid.

certificate_unknown Some other (unspecified) issue arose in processing the

certificate, rendering it unacceptable.

illegal_parameter A field in the handshake was out of range or inconsistent

with other fields. This message is always fatal.

unknown_ca A valid certificate chain or partial chain was received, but the

certificate was not accepted because the CA certificate could

not be located or could not be matched with a known, trusted

CA. This message is always fatal.

86

access_denied A valid certificate was received, but when access control was

applied, the sender decided not to proceed with negotiation.

This message is always fatal.

decode_error A message could not be decoded because some field was out

of the specified range or the length of the message was

incorrect. This message is always fatal and should never be

observed in communication between proper implementations.

decrypt_error A handshake cryptographic operation failed, including being

unable to correctly verify a signature or validate a Finished

message. This message is always fatal.

export_restriction_

RESERVED

This alert was used in some earlier version of TLS. It must

not be sent by compliant implementations.

protocol_version The protocol version the client has attempted to negotiate is

recognized but not supported. This message is always fatal.

insufficient_security Returned instead of handshake_failure when a negotiation

has failed specifically because the server requires ciphers

more secure than those supported by the client. This message

is always fatal.

internal_error An internal error unrelated to the peer or the correctness of

the protocol makes it impossible to continue. This message

is always fatal.

user_cancelled This handshake is being canceled for some reason unrelated

to a protocol failure. If the user cancels an operation after the

handshake is complete, just closing the connection by

sending a close_notify is more appropriate. This alert should

be followed by a close_notify. This message is generally a

warning.

no_renegotiation Sent by the client in response to a hello request or by the

server in response to a client hello after initial handshaking.

Either of these would normally lead to renegotiation; when

that is not appropriate, the recipient should respond with this

alert. At that point, the original requester can decide whether

to proceed with the connection. This message is always a

warning.

unsupported_extensions Sent by the clients that receive an extended server hello

containing an extension that they did not put in the

corresponding client hello. This message is always fatal.

(Dierks and Rescorla, 2008:30-33)

87

Appendix B: Additional Background Information

RC4

Rivest Cipher 4 (RC4) was created by Ron Rivest in 1987 and is an example of a

stream cipher (Stamp and Low, 2007:103). The algorithm for RC4 is proprietary, but in

1994 an anonymous source reverse-engineered the algorithm and published what was the

believed specifications. The published algorithm has not officially been standardized, but

can still be found in use today in protocols such as the Secure Socket Layer (SSL) (Stamp

and Low, 2007:103).

DES

The Data Encryption Standard (DES) is an example of a block cipher. This

algorithm uses portions of a 64-bit key to encrypt a block of data. The 64-bit result is

concatenated to the end of the previous result to create a full ciphertext. Since its

creation, many weaknesses have been found in DES, and because of this the DES

algorithm has been updated with Triple DES (3DES). This method runs each data block

through the algorithm three times using different part of the encryption key for each pass.

AES

The Advanced Encryption Standard (AES) is another example of a block cipher.

Even though 3DES is more secure than DES alone, weaknesses still riddled the algorithm

prompting the National Institute of Standards and Technology (NIST) to search for a

replacement in 1997 (Trappe and others, 2006:151). AES was the result of that search.

88

Unlike DES, AES keys could vary between 128, 192, and 256 bits in length, and the

output for the algorithm is a 128 bit block.

SHA

 SHA was originally developed by the National Security Agency (NSA) and

published in 1993 as a Federal Information Processing Standard (FIPS) (Trappe and

others, 2006:224). Weaknesses found in SHA lead to an updated version named SHA-1,

which was published in 1995 (Trappe and others, 2006:224). The SHA-1 algorithm can

be found described in detail in the figure below. In short, the algorithm takes the input

data and breaks it into blocks. Each block is passed through a function using the result of

the previous block as extra input, with the first block being processed using initial values

standardized in the algorithm. The final output of the hash results in a 160-bit message

digest. SHA-1 alone only provides for 80 bits of security, thus the SHA-256, SHA-384,

and SHA-512 algorithms were added to the family (NIST, 1993).

MD5

 The MD family began with the MD2 algorithm since the first MD function was

never published (Trappe and others, 2006:224). The MD4 algorithm, created by Ron

Rivest, was soon to follow (Stamp and Low, 2007:225). Weakness became evident in

both of these algorithms, prompting Rivest to publish the MD5 algorithm. MD5 is the

most commonly used algorithm of the MD family and was designed as an improvement

to MD4. The algorithm functions similarly to the SHA-1 algorithm. The data to be

hashed is broken into 16-word blocks.

89

The SHA-1 Algorithm

1. Start with a message m. Append bits (padding) to obtain a message y of the form y =

m1||m2||…||mL, where each mi has 512 bits.

2. Initialize H0 = 67452301, H1 = efcdab89, H2 = 98badcfe, H3 = 10325476, H4 =

c3d2e1f0

3. For i = 0 to L – 1, do the following:

(a) Write mi = W0||W1||…||W15, where each Wj has 32 bits

(b) For t = 16 to 79, let Wt = (Wt-3 Wt-8 Wt-14 Wt-16) << 1

(c) Let A = H0, B = H1, C = H2, D = H3, E = H4

(d) For t = 0 to 79, do the following steps in succession:

 T = (A << 5) + ft(B, C, D) + E + Wt + Kt

 E = D

 D = C

 C = (B << 30)

 B = A

 A = T

(e) Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E

4. Output H0||H1||H2||H3||H4 – This is the 160-bit hash value

SHA-1 Algorithm (Trappe and others, 2006:226)

An initial block is defined and used to process the first block of data through an algorithm

consisting of 4 Rounds (Rivest, 1992). The result of the first block is then used to

compute the second block. This process continues until all blocks are processed,

producing a 128-bit message digest (Rivest, 1992). The figure below depicts the MD5

algorithm in pseudo code. For more information about the MD5 hash, refer to (Rivest,

1992). Today, the MD5 algorithm is considered to be broken (Stamp and Low,

2007:225). While some life remains in the algorithm, it should be phased out of any

implementation needing a hash algorithm.

90

MD5 Algorithm

// M = (Y0, Y1, … , YN-1), message to hash, after padding

// Each Yi is a 32-bit word and N is a multiple of 16

MD5(M)

 // initialize (A, B, C, D) = IV

 (A, B, C, D) = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476)

 for i = 0 to N/16 – 1

 // Copy block i in into X

 Xj = Y16i +j, for j = 0 to 15

 // Copy X to W

 Wj = Xσ(j), for j = 0 to 63

 // initialize Q

 (Q-4, Q-3, Q-2, Q-1) = (A, B, C, D)

 //Round 0, 1, 2, and 3

 Round0(Q, W)

 Round1(Q, W)

 Round2(Q, W)

 Round3(Q, W)

 //Each addition is modulo 2
32

 (A, B, C, D) = (Q60 + Q-4, Q63 + Q-1, Q62 + Q-2, Q61 + Q-3)

 next i

 return A, B, C, D

end MD5

MD5 Algorithm (Stamp and Low, 2007:226)

HMAC

The equation for calculating the MAC using HMAC is as follows:

MAC(text) = HMAC(K, text) = H[(K0 opad)||H(K0 ipad)||text)) (1)

where text is the input value, K0 is the key after any necessary preprocessing, opad is the

byte 0x5c repeated B times, and ipad is the byte 0x36 repeated B times, where B is the

block size (NIST, 2002). The table below describes the HMAC algorithm in detail.

91

The HMAC Algorithm

STEPS Step-By-Step Description

Step 1 If the length of K = B: set K0 = K. Go to step 4

Step 2 If the length of K > B: hash K to obtain an L byte string, then append (B-L)

zeros to create a B-byte string K0 (K0 = H(K)||00…00). Go to step 4

Step 3 If the length of K < B: append zeros to the end of K to create a B-byte string

K0 (K0 = K||00…00)

Step 4 Exclusive-Or K0 with ipad to produce a B-byte string: K0 ipad

Step 5 Append the stream of data „text‟ to the string resulting from step 4:

K0 ipad)||text

Step 6 Apply H to the stream generated in step 5: H((K0 ipad)||text)

Step 7 Exclusive-Or K0 with opad: K0 opad

Step 8 Append the result from step 6 to step 7: K0 opad|| H((K0 ipad)||text)

Step 9 Apply H to the result from step 8: H(K0 opad|| H((K0 ipad)||text))

Step 10 Select the leftmost t bytes of the result of step 9 as the MAC

Variables B – Block size (in bytes) of the approved Hash function

H – an approved Hash function

ipad – Inner pad; the byte x‟36‟ repeated B times

K – shared secret key

K0 – key K after an preprocessing to form a B byte key

L – Block size (in bytes) of the output for the approved hash

opad – Outer pad; the byte x‟5c‟ repeated B times

t - The number of bytes of MAC

|| - concatenation

 - Exclusive-Or operation

(NIST, 2002)

Diffie-Hellman Algorithm

 Diffie-Hellman (DH) and RSA are two of the most common public key

algorithms used today. DH was the first public key algorithm created by the same men

who first suggested the idea of a public key cryptosystem. This algorithm provides key

establishment through a simple key agreement method. DH is based upon the difficulty

of computing discrete logarithms, and the resulting key is at least 1024-bit long. For

more information about the DH algorithm refer to (Rescorla, 1999).

92

RSA Algorithm and PKCS #1 Encoding

The most successful implementation of a public key cryptosystem is with the use

of the RSA algorithm (Trappe and others, 2006:164). This algorithm was published in

1978 and is named after its creators Ron Rivest, Adi Shamir, and Len Adleman (Adams

and Lloyd, 2003:17). The security of RSA is based upon the mathematical difficulty of

factoring integers into two large primes. The figure below illustrates the RSA algorithm,

from key generation to encryption and decryption. A public key contains both the

resulting modulus, which must be at least 1024 bits in length, and the encryption

exponent.

The RSA Algorithm

1. Bob chooses secure prime p and q and computes n = pq

2. Bob chooses e with gcd(e, (p-1)(q-1))=1

3. Bob computes d with de ≡ 1(mod(p-1)(q-))

4. Bob makes n and e public, keep p, q, d secret

5. Alice encrypts m as c ≡ m
e
(mod n) and sends c to Bob

6. Bob decrypts by computing m ≡ c
d
(mod n)

RSA Algorithm (Trappe and others, 2006:165)

 When encrypting with RSA, the data is formatted with the Public-Key

Cryptography Standard (PKCS) #1. Version 1.5 of PKCS #1 describes a four-step

process to encryption. The first step is called the Encryption-Block Formatting. In this

phase data is formatted as follows:

 EB = 00 || BT || PS || 00 || D (2)

where EB is the resulting encryption block with the length equal to the that of the

modulus, BT is the block type, PS is a padding string, and D is the data. The block type

93

lets the entity decrypting the data know how the block was formatted. Three block types

are available; 00, 01, and 02, where the first two are used for private key encryption and

last one is used for public key encryption.

 The content of the padding string varies based upon the block type, and the length

of the padding string depends on the modulus and data lengths. For the content, if BT =

00 then each byte in the padding string is equal to 00, if BT = 01 each byte equals FF, and

if BT = 02 then the bytes are randomly generated, nonzero values. The padding string

helps the decrypting end in parsing the string. The entire encryption block must equal the

length of the modulus in bytes. Thus the length of the padding string is equal to the

length of the modulus minus the length of the data minus three for the block type and the

two 0x00 bytes in the heading. A security condition also states that the length of PS must

be at least 8 bytes. Therefore the length of the data is constrained to the length of the

modulus minus 11 in order t0 accommodate this condition and the rest of the bytes in the

heading (Kaliski, 1998).

 The last three steps of the RSA encryption are fairly straightforward. First, the

encryption block is converted from a byte string to an integer. Next, that integer is used

in the RSA algorithm along with the appropriate modulus and exponent values to create a

ciphertext. The resulting ciphertext is an integer value, and for the final step, it is

converted back into a byte string.

X.509 Certificates

The X.509 certificate has three formats and Figure 2 shows the certificate

structure for the Version 3 certificate. The Version is the first field, indicating which of

94

the three formats the certificate is following. The Serial Number comes next. Each

certificate signed by the CA receives a unique serial number, which helps in managing all

of the certificates in the PKI. The Signature field identifies the algorithm used to create

the digital signature in the certificate. The Issuer contains identifying information about

the entity that signed and issued the certificate. This information can include the

organization name, the organizational unit name, and even the country name where the

entity is located. The Validity of the certificate is a field containing two timestamps.

These timestamps indicate a window of time that the certificate is valid for.

The Subject contains the identifying information about the owner of the

certificate. Like the Issuer information, the Subject information can include the

organizational unit name, the organization name, and the country name. The Subject

Public Key information identifies the algorithm and the public key that is used with it.

The Subject Unique ID is a field that may optionally be used in Versions 2 and 3

certificates only. This unique value is attached to the subject to help identify any reuse of

a subject name over time.

Extensions can only appear in Version 3 certificates. Extensions “provide

methods for associating additional attributes with users or public keys and for managing

the certification hierarchy” (Housley and others, 1999:24). Each extension can be

marked as critical or noncritical. A critical extension must be processed, and when that is

not possible or the extension is not recognized, the certificate must be rejected. For

noncritical extensions, an entity must try to process it, but upon failure the extension can

be ignored. Many optional extension are defined in (Housley and others, 1999), ten of

which are described here.

95

The Authority Key Identifier is a pointer to the public key that is needed to

authenticate the digital signature of the certificate. The Subject Key Identifier is a unique

value attached to a certificate. If one certificate is used to sign other certificates, the

value of the Subject Key Identifier in the first certificate becomes the Authority Key

Identifier in the new certificates.

The Key Usage extension is a bit string that identifies the allowed usage or

purpose of the certificate. The nine functions identified in the Key Usage are as follows:

Digital Signature, Non-repudiation, Key Encipherment, Data Encipherment, Key

Agreement, Certificate Signature, CRL Signature, Encipher Only, and Decipher Only.

The Extended Key Usage “indicates one or more purposes for which the certified public

key may be used, in addition to or in place of the basic purposes indicated in the Key

Usage extensions” (Cooper and others, 2008:44).

 The CRL Distribution Points define locations for the CRLs. This extension can

list a single value or a number of general names, each of which describes “a different

mechanism to obtain the same CRL” (Cooper and others, 2008). If this extension

contains a single value, then that value is a fragment that, when appended to the CRL

Issuer name as found in the extension, gives the name of the distribution point. If

multiple values are listed, they can either be a directory name or a Uniform Resource

Identifier (URI). The directory name specifies the most current CRL and the URI is a

pointer that CRL.

 The Certificate Policies contains guidelines for the acceptable use of the

certificate. These policies give a “high-level statement of requirements and restrictions

with the intended use of the certificates issued under that policy” (Adams and Lloyd,

96

2003:83). This extension allows for applications with specific requirements to easily

confirm if a presented certificate is compliant or not. Certificate Policies allow for easier

interoperability between applications.

 The Subject Alternative Name and Issuer Alternative Name let other names or

information be bound to the Subject and Issuer respectively. These other identifiers can

include an email address, a DNS name, an IP address, or a URI (Cooper and others,

2008). The Subject Directory Attributes is an extension that also adds to the certificate

information about the Subject, such as nationality. The final extension is the Basic

Constraints, which is used to specify whether the certificate is that of the CA or not. The

Basic Constraints also specifies how many certificates can follow the CA certificate in

the hierarchy chain.

IP Header Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Version| IHL |Type of Service| Total Length |

 +-+

 | Identification |Flags| Fragment Offset |

 +-+

 | Time to Live | Protocol | Header Checksum |

 +-+

 | Source Address |

 +-+

 | Destination Address |

 +-+

 | Options | Padding |

 +-+

 Internet Datagram Header (Internet Protocol, 1981)

97

UDP

UDP is considered to be connectionless, which means that it sends data without

knowing if the receiving end is prepared for it. UDP does allow for fast transmission of

data. This makes the protocol ideal for applications such as Voice Over IP (VoIP) where

data needs to be transferred quickly and a dropped packet here and there does not disrupt

the application.

TCP

The first of which is Basic Data Transfer. This function defines and executes how

data is packaged, sent, and received. This description includes how data is packaged into

segments, how many bytes to use per segment, and also when to send the data. On the

receiving side, the application is guaranteed byte stream service, which means that the

data is delivered in order.

 TCP gives Reliability to the data transfer across the network. The protocol is

designed to detect when data has been damaged in transit, received out of order, received

more than once, or not received at all. TCP uses sequence numbers in each segment to

handle out of order or duplicated segments, a checksum as verification that the data has

not been corrupted in transit, and acknowledgements to mitigate lost data.

 Flow Control lets TCP manage how much data to send across the network. The

transmission window specifies how much data the receiving end can accept and buffer at

one time. The transmission window tells the sending node how much data it can send

before another acknowledgment message is received. The protocol allows this window

to fluctuate in size depending on current network variables.

98

 Mulitplexing or Multiprocessing lets a node process data from multiple sources at

once. TCP defines port numbers for both the source and the destination of the data.

These port numbers are how multiple connections can occur over a single socket. Each

connection is uniquely identified based upon the two port numbers and the two IP

addresses from both the TCP segment and the IP datagram.

A TCP header encapsulates the application data, when it is packaged for the

network. The format for the TCP header is seen in the figure below. A standard header

for TCP is 20 bytes long (at a minimum), but can be longer if TCP Options are present.

The first two elements in the TCP header are the Source and Destination Ports, each 2

bytes long. The port numbers are followed by the Sequence and the Acknowledgement

(ACK) Numbers. These values both have a length of 4 bytes. The sequence number is

arbitrarily chosen to begin with and is incremented for each byte of data that is sent. The

ACK number identifies the last byte of data that was received and is set to the next

expected sequence number from the other entity.

 The Data Offset is a byte long and identifies the number of words in the TCP

header, where a word is equal to 2 bytes. The data offset acts as a pointer indicating the

beginning of the segment data. The Reserved Field is left open for any future

functionality that may need to be added to the TCP header.

 The Flags come next and total a byte in length. Each bit signifies a different flag

and each flag signifies a different functionality. Six flags were originally defined with

two more added later to the protocol. Since the two new flags are not relevant to this

study, they are not discussed here. The six original flags are URG, ACK, PSH, RST,

SYN, and FIN. URG stands for Urgent and means that the segment is considered urgent

99

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Source Port | Destination Port |

 +-+

 | Sequence Number |

 +-+

 | Acknowledgment Number |

 +-+

 | Data | |U|A|P|R|S|F| |

 | Offset| Reserved |R|C|S|S|Y|I| Window |

 | | |G|K|H|T|N|N| |

 +-+

 | Checksum | Urgent Pointer |

 +-+

 | Options | Padding |

 +-+

 | data |

 +-+

TCP Header Format (Transmission Control Protocol, 1981)

and should be processed immediately. ACK means Acknowledgment and signifies that

the ACK number in the segment header is valid. The ACK bit should be set in every

segment of the connection except for the initial, first message. The PSH flag stands for

Push. This flag indicates that the segment data should be pushed up to the application as

soon as possible. The RST, or Reset, flag is used to reset the current TCP connection.

Usually this flag is set in response to a segment being sent to the wrong port or when the

entity needs to terminate the connection. SYN stands for Synchronize. This flag

indicates that a TCP connection is being established and it should only be seen in the first

message sent by each entity. The final flag FIN, or Finish, signifies that the sender has

no more data to send and that the connection should be closed. The preferred method for

terminating a connection is to use the FIN flag instead of the RST flag.

 The Window field is 2 bytes long and indicates the number of bytes that the

sender is willing to accept at one time. The Checksum is a 2 byte field that is used to

100

determine if the data has been change or corrupted in transit. The Urgent Pointer

indicates the Sequence Number of the last byte to be considered part of the urgent data

when the URG flag is set. This field is 2 bytes in longs.

 The Options field was created to allow for any extensions or modifications to

TCP. Instead of having to completely upgrade the protocol for every adjustment, one

could add to the existing protocol using the options. This field is always located after the

required part of the header and before the segment data. The length of the options can

vary depending on which options are used. The format of every option starts with a bytes

that indicates its kind. Only two options are available the just consist of the kind. For the

other multi-byte options, the length follows the kind. The length is only 1 byte long and

includes both the kind and the length in its count. Up to 58 bytes are available for the

options.

 The End-of-Option List (EOL) is the first option kind, which has a value of 0x00.

This option indicates that there are no more options left in the list. The EOL is not used

if the options end in a 4 byte boundary. The other single byte option is the No-Operation

(NOP). The value of this option is 0x01 and means that the node should do nothing. The

NOP is usually used as a separator or placeholder in the list of Options.

 The Window Scale Option (WSOPT) adds higher performance capabilities to

TCP. This option allows the two entities to negotiate a window scaling factor, which

means that the entities can change the default maximum buffer size. This option has 3

bytes; the kind, the length, and the scaling factor. The scaling factor is applied to the

sending entity‟s receive window. This option must be negotiated in the SYN segments,

and both sides must send this option in order for it to apply to the current connection.

101

 The Timestamp Option was also created to add higher performance capabilities to

TCP. This option lets each entity check the other‟s clock, as well as ensuring that old

segments are not acknowledged. The format for this option is as follows: the kind,

length, a 4 byte TSvalue, and a 4 byte TS echo (TSecr) value. The TSvalue is the current

timestamp of the sending entity. The TSecr value is the timestamp value the other entity

sent in the last received segment. This option must be sent in the SYN messages or it is

ignored in the rest of the connection. Also, if the Timestamp option is used, it must

always be sent and echoed from both sides.

 The Selective Acknowledgement (SACK) Option optimizes the

acknowledgement process of the data. As originally described in the TCP standard, the

ACK numbers indicate all of the bytes in sequence, up to the ACK number, that has been

received. The advantage of this method is that every segment does not need an

acknowledgment. The disadvantage is when a segment is lost, for any segment sent after

the lost one must also be resent. To optimize this process, the SACK Option is used to

specify ranges of data that has been received. Thus if one segment is lost, only that

segment is resent because the host can still acknowledge all the data received after that

lost segment. Two different option formats are used for the SACK Option. The first is

the SACK-Permitted, which is 2 bytes long. This option indicates that the entity can

perform Selective Acknowledgements. Both entities must send this option in the SYN

messages before it can be used. The second option is the SACK itself, which consists of

the kind, the length, and up to four distinct blocks of data. Each block contains two

values; the first for the first byte received and the second for the last byte received in the

block.

102

 The Padding field in the TCP header is only used if the TCP header length does

not end in a 4 byte boundary. This uneven length can only occur when TCP Options are

present in the header. Finally, after the all of header information comes the application

data.

MAC calculation for TLS Protocol

Before encryption, a MAC of the data in its current form is calculated and added

to the data. For stream ciphers, the MAC is just appended to the end of the data before it

is encrypted. For block ciphers, the length of the data block must be a multiple of eight

before it can be encrypted. Thus the data block is as follows:

 data || MAC || paddingLen || paddingStr (3)

where paddingLen is a byte indicating the length of paddingStr, and each byte in

paddingStr is equal to paddingLen. If the cipher algorithm is null, then the data remains

unencrypted and the MAC size is zero.

Difference of PRF between TLSv1.1 and TLSv1.2

For TLS Versions 1.0 and 1.1, the HMAC_hash used is a combination of both

MD5 and SHA-1. Thus the PRF for these versions is calculated as follows:

PRF(secret, label, seed) = P_MD5 (S1, label || seed) XOR

 P_SHA1(S2, label || seed) (4)

where S1 and S2 are part of secret. If the length of the secret is even, then S1 || S2 =

secret where the S1 and S2 are of equal length. If the length of secret is odd, then S1 ||

S2[1:] = secret, where S1 and S2 are of equal length and the last byte of S1 is also the first

103

byte of S2. For Version 1.2, the PRF function just uses SHA256 as the basis of the

HMAC. The PRF for this version is calculated as follows:

 PRF(secret, label, seed) = P_SHA256 (secret, label || seed) (9)

For all versions of the PRF, the P_hash function is iterated as many times needed

to produce the number of bytes required. For example, suppose 100 bytes of data is

needed as an output from the PRF. For the first version, the P_MD5 hash is run 7 times

and the last 12 bytes are dropped to get 100 bytes. The P_SHA1 hash is run 5 times to

get an even 100 bytes. These two values are then XORed to get the final PRF result. For

the second version, P_SHA256 is run 4 times and the last 28 bytes is dropped to get the

final result of 100 bytes.

104

Appendix C: Scapy

In order for the MitM machine to accomplish the above attack, some tool is

needed that gives the MitM the flexibility he needs to perform each step. For this

experiment Scapy is chosen to be the tool running on the MitM machine. Scapy is an

open source Python program that provides a myriad of capabilities by enabling “users to

send, sniff and dissect, and forge network packets” (Biondi, 2010:3). This program

provides many benefits to this experiment, combining many capabilities into one tool.

First the MitM needs to be able to sniff packets off the network and quickly grab

the vital information that is needed from the packet. Scapy‟s sniffing capability not only

allows a user to sniff and store all packets on the network, but also lets a user sniff for

particular packets based on protocol fields. For example, a user can ask Scapy to filter

and store all packets from a particular IP address and with a specific destination port

number. This capability allows the MitM to pick up just the TLS packets that it needs

and not have to sort through a long list to find them.

Scapy inherently contains many common protocols and can quickly parse

captured packets into each protocol layer and their subsequent fields. If a protocol that a

user needs does not already exist in Scapy, it can easily be coded and added to the

program. A captured packet can then displayed as a whole showing all protocols used

and their fields, or each individual field can be accessed and stored. This feature allows

the MitM to store all the TLS Handshake messages to be used later in the Finished hash.

This feature also lets the MitM store individual pieces of information, such as the

105

clientRandom value from the ClientHello packet, which is used in generating the session

keys.

Not only does the MitM need to sniff and have access to the data in the packets,

he also needs to be able to generate packets from scratch to send to the server and the

client. Scapy is a very handy packet generator that allows a user to create packets

however she wishes, even if the packet does not comply with protocol standards. Also,

many of the fields for the protocols contain default values or automatically fill in values.

For example, the IP Header Checksum is automatically calculated and entered into the

field by Scapy when the packet is sent. Yet, if the user wishes to put her own value in as

the header checksum she can do so. This capability allows the MitM to quickly craft

packets, adding or changing only the data that is required and not having to worrying

about creating the entire packet.

Scapy also has a nice send and receive functionality. Users can create and send

packets without any care for the responses. Scapy can also send packets created by the

user and receive and store the responses. The user can tell Scapy to store all the

responses or just the first response received. The send and receive functionality benefits

the MitM greatly. For example, the MitM only has to forward the sniffed ClientHello

packet to the server and tell Scapy to receive the first response. Automatically the

server‟s reply is grabbed and stored by Scapy without the MitM needing to sniff the

network to find the packet.

Appendix D: Raw Data Interpretation

 The raw data for this experiment was collected using Wireshark. Each packet

capture was exported into a Comma Separate Values summary so that it can be opened

into an Excel spreadsheet. The Excel sheet indicates the start of each TLS Handshake

and end packet that the data result was taken from. All information related to the data

collection, including the Wireshark captures and the Excel spreadsheets,

 as well as the script used to run and collect the data can be found in the companion CD.

Bibliography

Adams, Carlisle and Steve Lloyd. Understanding PKI Concepts, Standards, and

Deployment Considerations (2
nd

 Edition). Boston: Addison-Wesley, 2003.

“Apache Module mod_ssl.” Apache documentation.

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslsessioncache. 8 June 2011.

Aziz, Benjamin and Geoff Hamilton. “Detecting Man-in-the-Middle Attacks by Precise

Timing,” 2009 Third International Conference on Emerging Security Information,

Systems and Technology. IEEE Computer Society, 2009.

Biondi, Philippe. Scapy Documentation. Release 2.1.1. April 2010.

www.secdev.org/projects/scapy/doc. 2 July 2011.

Boyd, Colin and Anish Mathuria. Protocols for Authentication and Key Establishment.

Germany: Spring, 2003.

Burkholder, Peter. “SSL Man-in-the-Middle Attacks,” SANS Institute Reading Room.

1 February 2002. http://www.sans.org/reading_room/whitepapers/threats/ssl-

man-in-the-middle-attacks_480. 28 June 2011.

Cardozo, Ximena. “Wireshark and Excel/Open Office.” Forum reply.

www.wireshark.org/lists/wireshark-users/2007-4/msg00178.html. 13 June 2011.

“Certificates.” Ubuntu documentation.

https://help.ubuntu.com/10.04/serverguide/C/certificates-and-security.html. 25

May 2011.

“Comodo Report of Incident.” Incident report and update. http://comodo.com/Comodo-

Fraud-Incident-2011-03-23.html. 23 June 2011.

Cooper, D., S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk. Internet X.509

Public Key Infrastructure Certificate and Certificate Revocation List (CRL)

Profile. Request for Comments: 5280. May 2008. www.ietf.org/rfc/rfc5280.txt.

2 July 2011.

Dierks, T. and C. Allen. “The TLS Protocol Version 1.0.” Request for Comments: 2246.

January 1999. www.ietf.org/rfc/rfc2246.txt. 28 June 2011.

Dierks, T. and E. Rescorla. “The Transport Layer Security (TLS) Protocol Version 1.2.”

Request for Comments: 5266. August 2008. http://tools.ietf.org/html/rfc5246.

28 June 2011.

Elks, Jordan. “Man-in-the-Middle Attack: Focus on SSLStrip,” ICTN 4040

Communication Security. East Carolina University. 2011.

“Force Files to Download Instead of Opening.” Windows howto.

www.nilpo.com/2007/11/apache/force-files-to-download-instead-of-opening. 26

May 2011.

Gasketll, Andy. “Making the WebBrowser Control Synchronous.”

http://gaskell.org/making-the-webbrowser-control-synchronous. 8 June 2011.

Geary, Aaron C. Analysis of a Man-in-the-Middle Attack on the Diffie-Hellman Key

Exchange Protocol. MS thesis. Naval Post Graduate School, Monterey CA,

September 2009.

Gunnarsson, Helgi Hrafn. “C# WebBrowser control: Clearing cache without clearing

cookies.” StackOverFlow forum. http://stackoverflow.com/questions/2030804/c-

webbrowser-control-clearing-cache-without-clearing-cookies. 8 June 2011.

Hogg, Robert V. and Elliot A. Tanis. Probability and Statistical Inference (7
th

 Edition).

New Jersey: Pearson Prentice Hall, 2006.

Hollenbeck, S. “Transport Layer Security Protocol Compression Methods.” Request for

Comments: 3749. May 2004. www.ietf.org/rfc/rfc3749.txt. 28 June 2011.

“HTTPD – Apache2 Web Server.” Ubuntu documentation.

https://help.ubuntu.com/10.04/serverguide/C/httpd.html. 25 May 2011.

Housley, R., W. Ford, W. Polk, D. Solo. Internet X.509 Public Key Infrastructure

Certificate and CRL Profile. Request for Comments: 2459. January 1999.

www.ietf.org/rfc/rfc2459.txt. 2 July 2011.

“Internet Layer.” Microsoft MSDN Library. http://msdn.microsoft.com/en-

us/library/ms817899.aspx. 28 June 2011.

Internet Protoco. DARPA Internet Program Protocol Specifications. Request for

Comments: 791. September 1981. www.ietf.org/rfc/rfc791.txt. 2 July 2011.

Kaliski, B. PKCS #1: RSA Encryption Version 1.5. Request for Comments: 2313.

March 1998. www.ietf.org/rfc/rfc2313.txt. 2 July 2011.

Kurose, James F. and Keith W. Ross. Computer Networking (5
th

 Edition). Boston:

Pearson Education, Inc., 2010.

Lemos, Robert. “Man-in-the-middle attack sidesteps SSL,” Security Focus. 18 February

2009. www.securityfocus.com/brief/910. 26 June 2011.

Loshin, Pete. TCP/IP Clearly Explained. San Francisco: Morgan Kaufmann Publishers,

2003.

Mantin, Itsik. Analysis of Stream Cipher RC4. MS thesis. Weizmann Institute of

Science, 2001.

National Institute of Standards and Technology. The Keyed-Hash Message

Authentication Code (HMAC). FIPS PUB 198. Gaithersburg, MD, 6 March

2002.

National Institute of Standards and Technology. Secure Hash Standard. FIPS PUB 180-

1. Gaithersburg, MD, 11 May 1993.

“OpenSSL.” Ubuntu documentation. https://help.ubuntu.com/community/OpenSSL. 25

May 2011.

“Python 2.5.” Programming package download site.

www.python.org/download/releases/2.5. 13 June 2011.

“Python Programming Language.” Official website. www.python.org 10 June 2011.

Ramsey, Fred L. and Daniel W. Schafer. The Statistical Sleuth: A Course in Methods of

Data Analysis (2
nd

 Edition). Belmont, CA: Brooks/Cole, 2002.

Rescorla, E. Diffie-Hellman Key Agreement Method. Request for Comments: 2631.

June 1999. www.ietf.org/rfc/rfc2631.txt. 2 July 2011.

Rivest, R. The MD5 Message-Digest Algorithm. Request for Comments: 1321. April

1992. www.ietf.org/rfc/rfc1321.txt. 2 July 2011.

“Scapy.” Official website. www.secdev.org/projects/scapy. 10 June 2011.

Sharpe, Richard. Wireshark User’s Guide. Ulf Lamping: 2011.

www.wireshark.org/docs/wsug_html. 2 July 2011.

“SolutionBase: Setting up a simple Web site with Apache 2.2.” TechRepulic howto.

www.techrepulic.com/article/solutionbase-setting-up-a-simple-web-site-with-

apache-22/6048525. 26 May 2011.

Stamp, Mark and Richard M. Low. Applied Cryptanalysis: Breaking Ciphers in the Real

World. Hoboken, New Jersey: John Wiley & Sons, Inc., 2007.

“T Distribution Calculator.” www.stat.tamu.edu/~west/applets/tdemo.html. 3 July 2011.

Transmission Control Protocol. DARPA Internet Program Protocol Specification.

Request for Comment: 793. September 1981. www.ietf.org/rfc/rfc793.org. 2

July 2011.

Trappe, Wade and Lawrence C. Washington. Introduction to Cryptography with Coding

Theory (2
nd

 Edition). New Jersey: Pearson Prentice Hall, 2006.

“Upper Critical Values of the Student‟s-t Distribution.” Engineering Statistics

Handbook. http://itl.nist.gov/div898/handbook/eda/section3/eda3672.htm. 3 July

2011.

Vacca, John R. Public Key Infrastructure Building Trusted Application and Web

Services. United States of America: Auerbach Publications, 2004.

“WebBrowser Control Overview.” MSDN documentation.

http://msdn.microsoft.com/en-us/library/w290k23d.aspx. 9 June 2011.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
15-09-2011

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Sep 2009 – Sep 2011

4. TITLE AND SUBTITLE

Detecting Man-in-the-Middle Attacks against Transport Layer Security Connections with Timing

Analysis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Wagoner, Lauren M., Ms

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCO/ENG/11-16

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
intentionally left blank

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

 The Transport Layer Security (TLS) protocol is a vital component to the protection of data as it

traverses across networks. From e-commerce websites to Virtual Private Networks (VPNs), TLS protects

massive amounts of private information, and protecting this data from Man-in-the-Middle (MitM) attacks

is imperative to keeping the information secure. This thesis illustrates how an attacker can successfully

perform a MitM attack against a TLS connection without alerting the user to his activities. By deceiving

the client machine into using a false certificate, an attacker takes away the only active defense mechanism

a user has against a MitM. The goal for this research is to determine if a time threshold exists that can

indicate the presence of a MitM in this scenario. An analysis of the completion times between TLS

handshakes without a MitM, with a passive MitM, and with an active MitM is used to determine if this

threshold is calculable. Any conclusive findings supporting the existence of a timing baseline can be

considered the first steps toward finding the value of the threshold and creating a second layer defense to

actively protect against a MitM.
15. SUBJECT TERMS
Transport Layer Security, TLS, Secure Socket Layer, SSL, Man-in-the-Middle, Timing Analysis

16. SECURITY CLASSIFICATION
OF: U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
 123

19a. NAME OF RESPONSIBLE PERSON

Jeffrey W. Humphries, Lt Col, USAF

(ENG)
REPORT

U
ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)
(937)-255-3636 x7253 jeffrey.humphries@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

